ENTSO-E Overview of Transmission Tariffs in Europe: Synthesis 2016

June 2017
This study was produced by the ENTSO-E Working Group Economic Framework.

Drafting team: Nick Pittarello (Great Britain), Igor Jurišević (Serbia), Konrad Godzisz (Poland), Evdokia Koutsoula (Greece), Ketil Grasto Røn (Norway), Adeline Lassource (ENTSO-E).

Frank Woessink (Convenor, Netherlands), Sandra Jaeger (Austria), Ann Vervaecke (Belgium), Aleksandar Miliša (Bosnia and Herzegovina), Viktoria Popovska (Bulgaria), Kristina Mravak Knezić (Croatia), Stelios Savvides (Cyprus), Martin Kodousek (Czech Republic), Steffen Østermark (Denmark), Peep Soone (Estonia), Anssi Nevalainen (Finland), François Regairaz (France), Izabela Netkova (FYROM), Lisa Beuger (Germany), Heiderose Adler (Germany), Benedikt Bartosch (Germany), Dennis Klink (Germany), Zsuzsanna Hodi (Hungary), Svandis Hlin Karlsdottir (Iceland), Aoife Mills (Ireland), Luigi Mauro (Italy), Antons Kutjuns (Latvia), Darius Zagorskis (Lithuania), Marc Schintgen (Luxemburg), Željko Adžić (Montenegro), Stephen McIvore (Northern Ireland), Gro Ballestad (Norway), Carolina Manha (Portugal), Adrian Suta (Romania), Jan Orac (Slovakia), Tomaž Jamnikar (Slovenia), José-Carlos Fernández (Spain), Rebecca Nilsson (Sweden), Thomas Reinthaler (Switzerland).

Disclaimer: Based on public data. The ENTSO-E association produces this overview in order to enhance public access to information about its work. If errors are brought to our attention, we will try to correct them. However, ENTSO-E association, ENTSO-E members and ENTSO-E representatives accept no responsibility or liability whatsoever with regard to all or part of this overview.
Table of contents

1. **Executive summary** ... 4
2. **Introduction** .. 6
3. **Methodology** .. 7
4. **Main characteristics of TSO tariffs in Europe** ... 9
5. **Costs included in the calculation of the Unit Transmission Tariffs** 10
6. **Unit Transmission Tariffs in 2016** .. 11
7. **Analysis of TSO components of Unit Transmission Tariffs** ... 12
8. **Analysis of non-TSO components of Unit Transmission Tariffs** 19
9. **Appendices** .. 21
 - Appendix 1: Country specific details .. 22
 - Appendix 2: Voltage levels operated by TSOs ... 37
 - Appendix 3: Comparison of network losses prices ... 39
 - Appendix 4: Comparison of system services prices .. 40
 - Appendix 5: Tariff areas in countries with generation/consumption tariffs with locational differentiation ... 41
 - Appendix 6: Other regulatory charges not directly related to TSO activities 44
 - Appendix 7: First connection charges .. 48
 - Appendix 8: Special tariffs ... 53
 - Appendix 9: Treatment of Final Customers vs Distribution System Operators 57
 - Appendix 10: Reactive Energy ... 61
 - Appendix 11: Netting of flows for the application of transmission tariffs 66
 - Appendix 12: Exchange rates ... 68

Glossary of terms ... 69
1. Executive summary

Transmission tariffs are one of the key elements of the Internal Electricity Market (IEM). Different tariff schemes have evolved and co-exist across Europe.

In order to compare TSO tariffs, the ENTSO-E Economic Framework Working Group calculates an annual “Unit Transmission Tariff” (UTT) for each participating country on a pre-defined “base case”. It is this virtually created UTT expressed in €/MWh that is discussed throughout this document. Thus, this overview does not compare individual transmission tariffs directly. Moreover, this overview does not take into account differences between countries in areas such as quality of service, market arrangements, technical characteristics, environmental aspects, or the location and density of generation/load, despite these factors having an influence on the absolute level of tariffs.

The “base case” used for the calculation of the UTTs is characterized by a pre-defined voltage level to which load and generation are connected, and pre-defined power demand and utilization time. The calculation of the UTT covers charges invoiced to base case grid users (generation and load) for the purpose of covering both TSO costs (infrastructure, system services and losses) and where applicable non-TSO costs (renewable energy support, regulatory levies, stranded costs, etc).

The 2016 edition of the ENTSO-E Overview of Transmission Tariffs in Europe makes two clarifications to the data submitted by TSOs. Firstly that, in general, the total UTT includes non-TSO costs charged to “base case” users, even if they do not form part of the TSO tariffs in the participating countries and even if they are not charged directly to base case users. This is because in some countries, non-TSO costs do form part of or are invoiced along with the TSO tariff and therefore, for consistency, it is necessary to include them. However non-TSO costs can still be disaggregated and are shown separately in this document in order to be transparent about the different elements charged to base case users. This partly explains the increase in the non-TSO costs compared to last year. The non-TSO costs mostly relate to renewable energy support (RES) schemes.

It must be clear that the focus of this report is on the charges that relate to the services provided by the TSOs.

In terms of the main findings, the table below summarises the overall change in the average UTT components:

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>Δ 2016/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average European UTT</td>
<td>11.88 €/MWh</td>
<td>+ 11.91 %</td>
</tr>
<tr>
<td>• Due to TSO Costs</td>
<td>8.32 €/MWh</td>
<td>+ 3.70 %</td>
</tr>
<tr>
<td>• Due to Non-TSO Costs</td>
<td>3.56 €/MWh</td>
<td>+ 31.14%</td>
</tr>
</tbody>
</table>

The graph below illustrates how the UTT has evolved over recent years:
On average, the TSO cost component of the UTT is divided 58% for infrastructure, 31% for system services and 11% for losses. On average, 60% of the TSO cost component is invoiced based on energy (i.e. on a volume, or MWh basis), while 40% is invoiced based on power (i.e. a capacity, or MW basis). The TSO part of the UTT is applied to generation and load in 15 countries whereas in 20 countries only load is charged. The average level of the TSO part of the UTT is 7.70 €/MWh for load and 0.62 €/MWh for generators. The TSO part of the UTT is charged by using locational signals in 6 countries.
2. Introduction

Transmission tariffs are one of the key elements of the Internal Electricity Market. It should be noted that this Overview is not a direct comparison of transmission tariffs and if used in this way, any conclusions drawn are likely to be misleading. Based on different national contexts and national policies, which transmission tariffs have to meet, there are numerous approaches which implies a considerable complexity throughout Europe. It is outside the scope of this report to analyse all influences that shape the tariffs in each system. As there is no single “correct solution” for the allocation of costs to transmission users, different tariff schemes exist in Europe. Differences might include whether market mechanisms are used as part of the regulatory regime, the treatment of transmission losses and of ancillary services, and the level of first connection costs to which transmission grid users are exposed. This Overview does not take into account the differences among countries in areas such as quality of service, market arrangements, technical characteristics, environmental aspects, consumption density, and generation location – all factors that influence the level of such tariffs.

With the above in mind, in order to make the tariffs more comparable across the ENTSO-E countries participating in this report, a “Unit Transmission Tariff” (UTT) is calculated for a pre-defined “base case”, discussed further in Section 3. Thus, this overview does not compare individual transmission tariffs, but calculated Unit Transmission Tariffs expressed in €/MWh which may significantly differ from country specific TSO tariffs. It is this “Unit Transmission Tariff” that is discussed throughout this document.

The above diagram summarises how this document is structured. Section 3 describes the methodology for the calculation of Unit Transmission Tariffs and the definition of the base case. Section 4 outlines the main characteristics of the TSO tariffs considered in the calculation of the Unit Transmission Tariffs. Section 5 provides detail on the costs that have been considered in the calculation of Unit Transmission Tariffs for each country, including where estimations have been made. Section 6 outlines the resulting Unit Transmission Tariffs for 2016. Section 7 analyses the TSO components of the Unit Transmission Tariffs. Section 8 examines the non-TSO components of the Unit Transmission Tariff, i.e. those costs included in the Unit Transmission Tariff, but not directly attributable to the activities of TSOs. Finally the appendices contain further detail, including country-specific remarks providing additional clarity on the reasons for any significant differences.
3. Methodology

- The main purpose of this ENTSO-E overview is to present a comparison of calculated 2016 Unit Transmission Tariffs expressed in €/MWh for a pre-defined “base case”.

- The “base case” is characterized by (i) a pre-defined voltage level to which load and generation are connected; and (ii) a power demand and utilization time, as follows:
 - Voltage level: Since voltage levels of transmission networks vary across Europe, (see Appendix 2), in order to facilitate comparison an assumption has been made that both producers and consumers are connected to the EHV (Extra High Voltage) network (400 kV-330 kV). For countries with no EHV network, load or representative load connected to the EHV network, tariffs for lower voltages have been considered.
 - Power demand and utilization time: The typical load considered has a maximum demand of 40 MW when it is connected to the EHV network, and a maximum demand of 10 MW when it is connected to lower voltages. In both cases 5,000h of utilization time has been assumed.

“Base case users” are users with the characteristics of connection, power demand and utilization time specified above.

- The Unit Transmission Tariff is calculated under the hypothesis of the “base case” by adding the charges applied to load (L) and generation (G) (in cases where G is charged). For countries with different tariff rates per location, an average value has been taken.

- In order to make the overview as comparable as possible, the calculation of the Unit Transmission Tariff covers tariffs and charges invoiced to the base case users (even if those charges are not recovered through TSO tariffs) in order to allocate the following costs:
 - “TSO costs”, i.e. costs related to TSO activities: Infrastructure costs (OPEX, depreciation and return on capital), costs of purchasing system services and losses compensation costs;
 - “Non-TSO costs”, i.e. costs not directly related to TSOs’ activities. For example: stranded costs, costs of renewable or cogeneration support schemes, regulatory levies, costs of diversification and security of supply, etc. Taxes for funding non-TSO Costs are not included in the calculation of the UTT.

The above is particularly relevant when considering the graphs in this document.

- In addition, some examples are calculated by varying the “base case” assumptions:
 - The voltage level (See Section 6);
 - The load’s utilization time (see Section 7.4);
 - The location of generation and load (same area / different area) (see Section 7.5);

- For countries outside the Eurozone, local currency exchange rates as of 31st December 2016 have been used to calculate the Unit Transmission Tariff expressed in € (see Appendix 12: Exchange rates).
The diagram below summarizes the methodology of this Overview:

- **Base case grid users**
 - Transmission tariffs paid by base case grid users (these tariffs may allocate non-TSO costs) (Section 4)
 - Other charges paid by base case grid users
 - Costs included in the calculation of the unit transmission tariffs (Section 5)

- **UNIT TRANSMISSION TARIFF analysed in this Overview** (Section 6)
 - TSO costs allocated to the base case grid users (Section 7)
 - Non-TSO costs allocated to the base case grid users (Section 8)
 - G
 - L

- **TSO costs**
 - Non-TSO costs
4. Main characteristics of TSO tariffs in Europe

Table 4.1 summarizes the main characteristics of TSO tariffs considered in the calculation of the Unit Transmission Tariffs shown in this overview: share of G and L network charges in %, seasonal and locational differentiation, whether the costs of losses and system services are included in TSO tariffs and whether they are charged by TSOs. As shown in section 3, TSO tariffs applied as a charge to the users of transmission networks may allocate both TSO costs and non-TSO costs.

<table>
<thead>
<tr>
<th>Country</th>
<th>Generation</th>
<th>Load</th>
<th>Seasonal</th>
<th>Location</th>
<th>Price signal</th>
<th>Seasons</th>
<th>Location</th>
<th>Are losses included in the tariffs charged by TSO?</th>
<th>Are system services included in tariffs charged by TSO?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>43%</td>
<td>57%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Belgium</td>
<td>7%</td>
<td>93%</td>
<td>X</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Bosnia & Herzegovina</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Croatia</td>
<td>0%</td>
<td>100%</td>
<td>X</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Cyprus</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Denmark</td>
<td>3%</td>
<td>97%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Estonia</td>
<td>0%</td>
<td>100%</td>
<td>X</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Finland</td>
<td>19%</td>
<td>81%</td>
<td>X</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>France</td>
<td>3%</td>
<td>97%</td>
<td>XXX</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Germany</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Greece</td>
<td>23%</td>
<td>77%</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Hungary</td>
<td>0%</td>
<td>100%</td>
<td>X</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Iceland</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Ireland</td>
<td>25%</td>
<td>75%</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Italy</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Latvia</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Lithuania</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>FYROM</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Montenegro</td>
<td>33%</td>
<td>67%</td>
<td>X</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>25%</td>
<td>75%</td>
<td>XXX</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Norway</td>
<td>40%</td>
<td>60%</td>
<td>X</td>
<td>Yes</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Poland</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Portugal</td>
<td>8%</td>
<td>92%</td>
<td>XX</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Romania</td>
<td>6%</td>
<td>94%</td>
<td>No</td>
<td>Yes</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Serbia</td>
<td>0%</td>
<td>100%</td>
<td>X</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Slovakia</td>
<td>3%</td>
<td>97%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Slovenia</td>
<td>0%</td>
<td>100%</td>
<td>XXX</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Spain</td>
<td>10%</td>
<td>90%</td>
<td>XXX</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Sweden</td>
<td>43%</td>
<td>57%</td>
<td>No</td>
<td>Yes</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0%</td>
<td>100%</td>
<td>No</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
<td>No</td>
<td>Yes%</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Remarks:
(1) The % shares of network charges between G and L are provided for the base case charge.
(2) The “X” indicates time differentiation. With one “X”, there is only one time differentiation (for example,”day-night”, “summer-winter”). With two “X” (or more), there are two (or more) time differentiations.

A country remark regarding Austria, Bosnia and Herzegovina, Cyprus, France, Greece, Italy, Montenegro, Netherlands, Northern Ireland, Norway, Spain, Sweden and Switzerland can be found in Appendix 1.
5. Costs included in the calculation of the Unit Transmission Tariffs

Table 5.1 provides information on different cost items related to energy transmission that have been included in the calculation of the Unit Transmission Tariff for the base case comparison which is presented in this overview. Some of these costs may not be included in the TSO transmission tariff or be included only partially, but are added for comparability purposes (they are indicated with red colour; see the legend under the table). First connection costs are not included in the Unit Transmission Tariffs. For further details, see country remarks.

Table 5.1. Costs included in the calculation of the Unit Transmission Tariffs

<table>
<thead>
<tr>
<th>Country</th>
<th>Infrastructure</th>
<th>System Services</th>
<th>OPEX (Except System Services, Losses and ITC)</th>
<th>Depreciation</th>
<th>Return on capital invested</th>
<th>ITC</th>
<th>Primary reserve</th>
<th>Secondary reserve</th>
<th>Tertiary reserve</th>
<th>Congestion Management (Tertiary)</th>
<th>Congestion Management (Cross border)</th>
<th>Black-Start</th>
<th>Voltage Control</th>
<th>System balancing</th>
<th>Losses</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>C</td>
<td>C</td>
<td>B/C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Czechia</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Estonia</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>France</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Germany</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Great Britain</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Greece</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ireland</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Israel</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Italy</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Latvia</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Lithuania</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Montenegro</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Netherlands</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Norway</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Poland</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Portugal</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Romania</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Slovakia</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Slovenia</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Sweden</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Spain</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>FYROM</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>C (estimated)</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Legend:
- C if a given cost item is included in the calculation of the Unit Transmission Tariff.
- C/B if for a given activity there are both costs and benefits/revenues, the costs are higher than benefits, and the difference is included in the calculation of the Unit Transmission Tariff (surplus of costs).
- B/C if for a given activity there are both costs and benefits/revenues, the benefits are higher than costs, and the difference reduces the Unit Transmission Tariff.
- N if a given cost is not considered in the calculation of the Unit Transmission Tariff.
- C or C/B or B/C marked as "estimated" indicate that the cost item is not invoiced by the TSO and estimated values are provided for comparability purposes.

Remark:
This chapter is referring to total costs (TSO costs and non-TSO costs) included in the calculation of the Unit Transmission Tariff.

Country remarks regarding Bulgaria, Denmark, Greece, Hungary, Italy, Lithuania, Luxembourg, Netherlands, Portugal, Romania and Spain to be found in Appendix 1.
6. Unit Transmission Tariffs in 2016

Chart 6.1 illustrates total Unit Transmission Tariffs when the base case is modified by varying the voltage level (three different kV levels). Charges related to TSO activities are coloured whereas other regulatory charges not directly related to TSOs’ activities are marked in dark blue.

Chart 6.1. Split of the Unit Transmission Tariffs between components related to TSO activities and non-TSO activities

Remarks:

- The example taken for this comparison is the base case (see Section 3) modified by considering different voltage levels.
- Other charges not directly related to TSO activities are included in the calculation of the Unit Transmission Tariff.
- Those countries for which certain elements of the 2016 Unit Transmission Tariff are estimations are marked in red colour.
- When a voltage level is not relevant, as it is not operated by the relevant TSOs the value is reported as 0.

Country remarks regarding Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, France, Germany, Great Britain, Greece, Hungary, Iceland, Italy, Latvia, Lithuania, Luxembourg, FYROM, Netherlands, Norway, Portugal, Slovakia, Spain and Switzerland are to be found in Appendix 1.
7. Analysis of TSO components of Unit Transmission Tariffs

7.1 Energy-related and power-related components

The main revenue drivers for Unit Transmission Tariffs are power (capacity), energy (volume) or both. Chart 7.1 presents the shares of power and energy components of the TSO components of the Unit Transmission Tariffs for the base case.

Chart 7.1. Energy-related and power-related components of the TSO components of the Unit Transmission Tariff

Remarks:
- The example taken for this comparison is the base case (see Section 3).
- Other charges not directly related to TSO activities (i.e. non TSO costs) are not included in the above graph.
- Values have been rounded.

Country remarks regarding Cyprus, France, Greece, Iceland, Italy, Norway, Slovenia and Spain are to be found in Appendix 1.
7.2 Generation component

The Unit Transmission Tariff is calculated by adding the charges applied to the generation (G) and load (L). Chart 7.2 provides the part of the TSO components of the Unit Transmission Tariff that corresponds to generation.

Chart 7.2. G components of the TSO components of the Unit Transmission Tariffs in 2016

Remarks:
- The example taken for this comparison is the base case (see Section 3).
- Other charges not directly related to TSO activities (i.e. Non-TSO costs) are not included in the above graph.
- Commission Regulation (EU) no 838/2010 places limits on annual average transmission charges paid by producers in each Member State. It is not possible to draw the conclusion from the above graph that some countries are breaching these Regulation because the graph is comparing G charges based on Unit Transmission Charges, and not actual tariff levels charged by TSOs. Separate monitoring procedures are in place to ensure TSOs remain compliant with EC Regulations.

Country remarks regarding Austria, France, Greece and Spain to be found in Appendix 1.
7.3 Load (demand) Component

The Unit Transmission Tariff is calculated by adding the charges applied to the generation (G) and load (L), which includes infrastructure costs, the costs of purchasing system services and losses. Chart 7.3 provides the part of the TSO components of the Unit Transmission Tariff that corresponds to load only.

Chart 7.3. L components of the TSO components of the Unit Transmission Tariffs in 2016

Remarks:
- The example taken for this comparison is the base case (see Section 3).
- Other charges not directly related to TSO activities (Non-TSO costs) are not included in the above graph.

Country remarks regarding Austria, France and Greece to be found in Appendix 1.
7.4 Impact of utilization time

Transmission charges paid by network users, and subsequently Unit Transmission Tariffs, change due to the utilization time if the applied tariffs have power (capacity) as a revenue driver. Chart 7.4 shows the impact of the utilization time on the TSO components of the Unit Transmission Tariff.

Chart 7.4. Impact of utilization time on the TSO components of the Unit Transmission Tariffs

Remarks:
- The example taken for this comparison is the base case (see Section 3) modified by considering different utilization times.
- Other charges not directly related to TSO activities (i.e. Non-TSO costs) are not included in the above graph.
- For most TSOs, a typical customer is a DSO with a seasonal load profile. Neither a full annual utilization time of 8,760 h nor a low utilization time of 2,000 h are realistic examples that occur on the grid. The results for these hypothetical utilization times are presented for comparison purposes only, in order to illustrate how fixed components of the tariffs impact on the average transmission charges.

Country remarks regarding France and Norway are to be found in Appendix 1.
7.5 Impact of location

Some transmission tariffs are differentiated by location. Chart 7.5 illustrates the impact of location on the TSO components of the Unit Transmission Tariff.

Chart 7.5. Impact of location on the Unit Transmission Tariffs

Remarks:
- The example taken for this comparison is the base case (see Section 3) modified by considering different locations.
- Other charges not directly related to TSO activities (i.e. non-TSO costs) are not included in the above graph.
- For more details about locational differentiation of transmission tariffs see Appendix 5. Tariff areas in countries with generation/consumption tariffs with locational differentiation.

Further details regarding Great Britain, Ireland, Northern Ireland, Norway, Romania, and Sweden are to be found in Appendix 5.
7.6 TSO Cost components of the Unit Transmission Tariffs

Chart 7.6 provides the split of the different TSO components of the Unit Transmission Tariff that is calculated in this report.

Chart 7.6. Components of TSO costs of the Unit Transmission Tariffs

Remarks:
- The example taken for this comparison is the base case (see Section 3).
- Other charges not directly related to TSO activities (i.e. non TSO costs) **are not included** in the above graph.
- The figures in the chart are estimations of the value of each final price component.
- For countries where it is not possible to split the tariff as it is done in this chart, some assumptions and estimations have been made. System services include system balancing if applicable.

A country remark regarding Cyprus, France, Great Britain, Greece, Italy, Montenegro, Netherlands, Portugal, Spain and Switzerland can be found in Appendix 1.
7.7 Evolution of TSO components of Unit Transmission Tariffs

Transmission tariffs change over time. Chart 7.7 shows the evolution of the TSO components of the Unit Transmission Tariffs over the period 2013-2016 in Euros using exchange rates on 31st of December 2016.

Chart 7.7. Evolution of TSO components of transmission tariffs

Euro per MWh - Constant Euros of 2016

Remarks:
- The example taken for this comparison is the base case (see Section 3).
- Other charges not directly related to TSO activities (i.e. non-TSO costs) are not included in the above graph.
- Prices have been updated to 2016 by using the annual average rate of change in the Harmonised Index of Consumer Prices (HICP) as provided by Eurostat. If it is not available, the official CPI data from the country is taken.
- For countries not in the Euro zone the exchange rate as for 31 December 2016 is used.
- See Country remarks for details on the reasons for annual changes of more than 10% or 0.5 €/MWh compared to last year.

Country remarks regarding Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, Germany, Great Britain, Greece, Hungary, Iceland, Ireland, Italy, Lithuania, Luxembourg, FYROM, Montenegro, Netherlands, Portugal, Slovakia, Spain and Switzerland are to be found in Appendix 1.
8. Analysis of non-TSO components of Unit Transmission Tariffs

Many TSOs across Europe recover additional monies from their customers that are not directly related to TSO activities. TSOs are often obliged to recover these additional monies as a result of national or regional regulations and the charges may either form part of transmission tariffs directly or form part of separate charging mechanisms.

This section is divided in two parts. The first details non-TSO costs by country and the second explores how non-TSO costs have evolved over recent years.

8.1 Non-TSO Costs

Non-TSO costs broadly fall into five main categories:

- Renewable Energy Support (RES) mechanisms: these are costs recovered through TSO charges aimed at supporting government targets to increase renewable generation. These costs are used to finance subsidies to grid-connected renewable generators. In terms of level, RES mechanisms represent the most important component of non-TSO costs;

- Non-RES Support mechanisms: these are costs recovered through TSO charges generally aimed at providing financial support to other government objectives, such as energy efficiency or subsidising the costs of maintaining grid networks to rural areas, for example;

- NRA/Other institutions: some costs are recovered through TSO charges that finance the activities of the relevant sector regulator or other institutions associated with the energy industry;

- Stranded Costs;

- Others.

Also refer to Appendix 6 for additional information.

Chart 8.1 Overview of non-TSO charges in ENTSO-E member countries
8.2 Evolution of non-TSO costs

Non-TSO costs have become an increasing proportion of overall TSO charges and the data below show how these costs have changed over recent years:

Chart 8.2 Evolution of non-TSO costs

Remarks:
- The example taken for this comparison is the base case (see Section 3).
- Prices have been updated to 2016 by using the annual average rate of change in the Harmonised Index of Consumer Prices (HICP) as provided by Eurostat. If it is not available, the official CPI data from the country is taken.
- For countries not in the Euro zone the exchange rate as for 31 December 2016 is used.
- See Country remarks for details on the reasons for annual changes of more than 10% or 0.5 €/MWh compared to last year.

Country remarks regarding Austria, Belgium, Bulgaria, Cyprus, Denmark, Estonia, France, Germany, Great Britain, Greece, Hungary, Italy, Latvia, Luxembourg, Netherlands, Norway, Slovakia, Spain and Switzerland are to be found in Appendix 1.
9. Appendices

1. Country specific details
2. Voltage levels operated by TSOs
3. Comparison of network losses prices
4. Comparison of system services prices
5. Tariff areas in countries with generation/consumption tariffs with locational differentiation
6. Other regulatory charges not directly related to TSO activities
7. First connection charges
8. Special Tariffs
9. Treatment of Final Customers versus Distribution System Operators
10. Reactive Energy
11. Netting of flows for the application of transmission tariffs
12. Exchange rates
13. Glossary of terms
Appendix 1: Country specific details

Austria

Main Characteristics
Only tariffs according to regulation are included in the report.

Unit transmission tariff
Network level 2 in Austria is only a transformer level, transforming from 220/380kV to 100kV. Therefore the tariff of network level 2 only applies if transformer is owned by TSO (irrespective if transformed 380kV to 110kV or 220kV to 110kV). If transformer is owned by connected party then tariff from network level 1 applies.

Range of components paid by generators and consumers
Base case includes following tariff components: Infrastructure, Losses, Secondary Reserve
Generation pays: Secondary Reserve, Losses
Load pays: Infrastructure, Losses
Losses is the only component which is paid by both (G+L)
Due to the defined methodology the losses tariff is included twice in the section losses.
Explanation: losses are paid both by G and L therefore it is defined in the methodology that the base case needs to include this tariff twice.
Previous years prices were calculated with different methodology concerning inclusion of tariffs. From 2015 on the losses tariff is included twice in the calculation as it is paid by G and L.

Belgium

Unit transmission tariff
There is a rise in tariff of more than 0,5€/MWh in relation to 2015 which is essentially due to a rise in other regulatory charges not directly related to TSO activities (in particular the PSO for strategic reserves and the federal contribution).

Netting of flows for the application of transmission tariffs
Both L and G are charged and for both there is a netting within 15’.

Bosnia and Herzegovina

Main Characteristics
Starting from 1st of January 2016 NOSBiH is in charge of purchasing energy for losses and energy and reserves for ancillary services on open tenders. Money for that purposes are covered by tariffs approved by regulatory. Before and in 2015, end users were paying directly to providers for losses and system services.

Bulgaria

Cost items included in calculation of the unit transmission tariff
For Tertiary Reserve we do not pay for capacity, only energy price. These costs are recovered by the imbalance price. So, we do not have costs to be recovered by a transmission tariff. The same is with the congestion management (internal). We do not generate costs. All costs for system balancing are also recovered by imbalance prices.

Unit transmission tariff
The non-TSO costs include the "social obligation fee" that all customers are obliged to pay to National Electric Company - who is a party under Long Term PPA and has the obligation to purchase all quantities of electricity from RES and CHP (must run generation) with preferential prices. The increase of this "social obligation fee" in 2016 is due to:
1. new connections to the grid of RES.
2. reallocation of costs from regulated to the free market.
3. intention to cover some part of the deficit generated in the previous years.

Other regulatory charges not directly related to TSO activities

The increase is mainly because of new RES connection to the Grid.

Cyprus

Main Characteristics

Despite the fact that the electricity market in Cyprus is 100% liberated the necessary Trading and Settlement Rules have not been implemented as yet and as a result no electricity market is currently operating. After decision regarding electricity market framework taken by the Cyprus Energy Regulatory Authority (CERA) the net pool model will be implemented. This model was chosen as the most appropriate trading arrangement approach for the Cyprus electricity market, given the unique system, market and commercial conditions of the energy sector in the Island. It is expected that electricity market will be operational in 2-3 years.

Energy and Power related components

No electricity market is currently operating in Cyprus and TSOC is not collecting any non-TSO costs. The only Non-TSO costs contemplated are costs related to a RES Levy. The Levy at the moment is billed and collected from all consumers by Electricity Authority of Cyprus who is the single supplier of electricity and are forwarded directly to the National Fund for the Promotion of RES and Energy Savings.

Components of the calculated unit transmission tariff

Transmission Losses are included in Infrastructure and System Services costs.

Other regulatory charges not directly related to TSO activities

No electricity market is currently operating in Cyprus and TSOC is not collecting any non-TSO costs. The only Non-TSO costs contemplated are costs related to a RES Levy. The Levy at the moment is billed and collected from all consumers by Electricity Authority of Cyprus who is the single supplier of electricity and are forwarded directly to the National Fund for the Promotion of RES and Energy Savings.

Czech Republic

Unit transmission tariff

The increase of the unit transmission tariff between 2015 and 2016 reflects higher allowed revenues in IV. regulatory period 2016-2018 (higher WACC, higher allowed costs and generally higher RAB and depreciations due to investments) together with lower technical units (consumption, reserve capacity) due to mild winters last years.

Other regulatory charges not directly related to TSO activities

CEPS does not report any non-TSO costs, as Czech TSO is not involved with their collection.

Denmark

Unit transmission tariff

Increase in TSO UTT primarily due to increase in expected costs for system services and a revenue deficit in 2015 - which is to be covered in the 2016-tariffs.

Increase in Non-TSO due to increase in RES-support (PSO-tariff). The PSO-tariff is highly dependent on the prices due to feed-in-tariffs. The increase in tariff vs. 2015 is mainly due to lower forwardprices and therefore higher subsidies. However, RES-support in Denmark is not and has never been a part of the regulated transmission activities and thus has never been included in the transmission tariffs invoiced by Energinet. Costs of RES-support is are allocated in by Energinet through a separate charge which does not include any TSO-costs.

Cost items included in calculation of the unit transmission tariff
All costs and benefits are estimated since the transmission tariff for 2015 are based on the budget for 2015. Excess revenue/deficit will be incorporated in the tariff for 2016.

Estonia

Unit Transmission Tariff

Non-TSO costs were not presented in the previous reports as they were neither part of income statement nor the TSO bill for network services. According to the changed methodology RES related non-TSO costs will be shown in 2016 data.

Finland

Netting of flows for the application of transmission tariffs

Netting is allowed for input/output tariff. Consumption tariff is applied to total consumption.

France

Main Characteristics

- Time differentiation with 5 temporal classes for voltages lower than 350 kV. Three kinds of differentiation exist: summer/winter, mid-peak/off-peak, and peak hours only in January, February and December. Tariff for higher voltages remains only based on usage duration.

Unit transmission tariff

Charges corresponding to the “220-150” voltage level (highest voltage level with statistically representative data) except for chart 7.4 (impact of utilization time) which displays the 330 kV and above voltage level.

Energy and Power related components

Non-TSO charges apply only to industrial customers. Among RTE customers with an utilization time between 4500 h and 5500 h, very few are industrial customers, the overwhelming majority are distribution loads which don't pay those charges. The invoice here is calculated for industrials customers.

Range of components paid by generators and consumers

- There is a G component only for generators connected at the 150 - 400 kV levels. The example above represents the costs of a generator and an industrial customer both connected at the 220-150 kV level.

Components of the calculated unit transmission tariff

Charges corresponding to the "220-150" voltage level (highest voltage level with statistically representative data). There is no specific allocation of system services or losses cost to any specific tariff, the values here are purely indicative.

Voltage levels operated by TSOs

As of 31 December 2016.

Cost items included in calculation of the unit transmission tariff

Grid access tariffs do not include tertiary reserve, which is managed via the Balancing Mechanism. Therefore the figures provided for France exclude tertiary reserve. However, every Balancing Responsible party has to pay 0.15 €/MWh to RTE for every physical extraction from its perimeter to cover the cost of contracting fast reserve and industrial load-shedding capacities. "Other" includes the remuneration of interruptible customers.

Germany

Unit transmission tariff

For comparability reasons of the report all RES support should be included in the Transmission Tariff Overview 2016. Therefore the general RES-support mechanism in Germany (so called
“EEG Umlage”) is included in the “Other regulatory charges not directly related to TSO activities” (Non-TSO costs) in the Transmission Tariff Overview 2016 for the first time (see Appendix 6). However, the “EEG Umlage” in Germany is not and has never been a part of the regulated transmission activities and thus has never been included in the transmission tariffs invoiced by German TSOs. Costs of RES-support are allocated by German TSOs through a separate charge which does not include any TSO-costs.
Great Britain

Unit transmission tariff

Highest Demand tariffs have been added to highest generation tariffs, which is not a realistic reflection of transmission charges in a given zone.

Increase in allowed revenue, combined with decreased demand charging base, accounts for 9.7% of the increase from last year.

System services account for 1.1% of the increase compared to last year.

Components of the calculated unit transmission tariff

- Small Generators’ Discount: €0.477386/kW discount to generation tariff and €0.652078/MWh discount to energy charge for generators below 100MW;
- The Assistance for areas with high electricity distribution costs special tariff recovers an assistance amount, which is passed to the Relevant Distributor in certain areas with high distribution costs: €0.294535/MWh.

Greece

Main Characteristics

Transmission Losses are recovered in the energy market. They are paid by those who inject energy in the transmission system (generators and importers).

System services are included in Uplift charges.

Unit transmission tariff

Transmission losses are paid by those who inject energy in the transmission system (generators and importers), however, an estimation of this cost has been included here for comparison purposes.

In the non TSO related costs, costs related to RES payments that are completely irrelevant to ADMIE are also included.

Energy and Power related components

Transmission losses are paid by those who inject energy in the transmission system (generators and importers), however, an estimation of this cost has been included here for comparison purposes.

In the non TSO related costs, costs related to RES payments that are completely irrelevant to ADMIE are also included.

Range of components paid by generators and consumers

Producers pay for transmission losses, however, this is done through the energy market and not through tariffs and uplift accounts.

Transmission losses are paid by those who inject energy in the transmission system (generators and importers), however, an estimation of this cost has been included here for comparison purposes.

In the non TSO related costs, costs related to RES payments that are completely irrelevant to ADMIE are also included.

Components of the calculated unit transmission tariff

In the non TSO related costs, costs related to RES payments that are completely irrelevant to ADMIE are also included.

Cost items included in calculation of the unit transmission tariff

Transmission losses are paid by those who inject energy in the transmission system (generators and importers), however, an estimation of this cost has been included here for comparison purposes.

In the non TSO related costs, costs related to RES payments that are completely irrelevant to ADMIE are also included.

Concerning Tertiary Reserve item, it is not included in the calculation, since according to the applied market model in the case that there is a need of this service, a constraint is added and one extra unit is required in the day ahead market. This of course increases the system marginal
price but in a way that is impossible to be calculated.

Other regulatory charges not directly related to TSO activities
In the non TSO related costs, costs related to RES payments that are completely irrelevant to ADMIE are also included.

Hungary

Unit transmission tariff
The difference between the realized and planned (at the tariff determination) profit of system balancing and the costs of secondary and tertiary reserves reduces/increases the next second year’s tariff for ancillary services. Because of the realized lower costs, the justified costs of ancillary services were reduced by 36%, so the tariff for ancillary services is significantly lower for the year 2016 than in 2015.

Cost items included in calculation of the unit transmission tariff
Total congestion rents on inter-connections are taken into account by regulatory authoritiy when approving the methodology for calculating network tariffs for the OPEX of system operation - not system-services - similar to ITC. This revenue always reduces the next year’s tariff.

The difference between the realized and planned (at the tariff determination) profit of system balancing reduces/increases the next second year's tariff for ancillary services.

Voltage levels operated by TSOs
The total reported value "330 kV and above" includes 61.33% of 400 kV circuits and 5.52% of 750 kV circuits. Other voltages are 220 kV (28.70%) and 132 kV (4.45%).

Other regulatory charges not directly related to TSO activities
All other regulatory charges not directly related to TSO activities are only paid by non-residential consumers. In detail you can see the RES support mechanism here: http://www.mavir.hu/web/mavir-en/renewable-energy-sources.

Iceland

Unit transmission tariff
Landsnet’s tariff is prepared in accordance with the revenue cap determined by the National Energy Authority of Iceland. The tariff applies to Distribution System Operators (DSOs) on the one hand and power-intensive industries on the other hand. Transmission fees are independent of the distance travelled by the power through the grid as well as the distance between the sites where the power is injected into and drawn from it.

A special charge is applied for ancillary services and transmission losses, at a fixed amount per each kWh drawn from the grid.

The tariff for consumption by power-intensive industries is denominated in US dollars while the tariff for DSOs, as well as for other items, is denominated in Icelandic kronur (ISK).

The grid tariffs for DSOs increased in 2016 due to accumulated lower revenue at the end of 2015 resulting in upward adjustments in tariffs, combined with the effect from new investments and cancellation of special asset discount period.

Energy and Power related components
The calculated ratio according to the Tariffs methodology is 70% power / 30% energy for Landsnet. Non-TSO costs are not applicable in Iceland.

Italy

Main Characteristics
- Losses on the Italian transmission network are purchased by load service entities on the basis of a standard losses factor. Purely for comparison purposes, in this overview the value of losses has been estimated by applying an average losses factor (based on the total value of losses,
including those on grids lower than EHV).
- System services costs are a passthrough component for the TSO.

Unit transmission tariff

The increase in the estimated UTT between 2015 and 2016 is mainly due to the higher value of the system services component, which reflects the increase of the UPLIFT (a passthrough tariff for the TSO, related to the charge for provision of dispatching services).

Energy and Power related components

Starting from 2016 the italian trasmission tariff (that is a part of the Unit Transmission Tariff shown in this report) is binomial and it is split into an energy-related and a capacity-related component:

- 2016 energy component = 0.071 cent. € /kWh (~10% of the transmission costs)
- 2016 capacity component = 2888.641cent. € /kW per year (~90% of the transmission costs).

Components of the calculated unit transmission tariff

- Losses: losses on the Italian transmission network are purchased by load service entities on the basis of standard losses factors. Purely for comparison purposes, in this overview the value of losses has been estimated by applying an average losses factor (based on the total value of losses, including those on the grids lower than EHV).
- System services: it is a pass through component for the TSO. The value provided is an estimated value of the 2016 system services/ancillary services unitary cost, based on an average of the UPLIFT component.
- infrastructure component: it has been estimated considering the sum of the unitary fees related to transmission (CTR tariff) and dispatching (DIS tariff)

Cost items included in calculation of the unit transmission tariff

- In 2016, the ITC component has not been considered in order to estimate the Unit Transmission Tariff
- "NON-TSO component": a 2016 estimated value has been reported. It includes other items that are not directly related to the Transmission activity (mainly aimed at providing system security)

Voltage levels operated by TSOs

2016 data are based on assets data at the end of 2016.

Netting of flows for the application of transmission tariffs

Starting from 2016, the Italian transmission tariff is binomial. As described below, Distributors pay to Terna the "CTR component" (infrastructure component of Transmission Tariff) for withdrawal of energy from NTG. The CTR component is split into two different subcomponents:

- CTR\textsubscript{E}: energy (volume) component, in "cent. €/kWh";
- CTR\textsubscript{P}: power (capacity) component, in "cent. €/kW per year".

Considering the energy component, it is applied on a monthly basis to the net energy withdrawn from distribution companies connected to the NTG. The transmission fee is applied only if the resulting balance is a withdrawal. For transmission fee purposes, the energy injected in the distribution grid at HV level (virtual interconnection points) is also considered as energy withdrawn from the NTG.

Latvia

Unit transmission tariff

Transmission tariff to users, the proprietary border of electrical installations of which is on the 06-20 kV side of 110/6-20 kV transformer. Taking into account that transmission networks of 110 kV and 330 kV operate in parallel in order to ensure the safety of the transmission system activity, in accordance with tariff calculation methodology, tariffs of transmission services for electricity user, which are connected to a 110 kV or 330 kV voltage level, have not been determined as different.

Other regulatory charges not directly related to TSO activities
There are no Non-TSO costs.

Lithuania

Unit transmission tariff

In Lithuania TSO voltage levels are only 330 kV and 110 kV. The new interconnections Lithuania-Poland and Lithuania-Sweden are commissioned and put into operation from the beginning of 2016 therefore the tariff in 2016 increases due to higher infrastructure, system services and losses costs. The regulator reduced the tariff for system services from 2016-08-01.

Cost items included in calculation of the unit transmission tariff

Voltage control reactive power benefits (payments for the reactive energy described in part "N") and system balancing B/C are included into infrastructure part (not in system services) of the tariff.

Luxembourg

Unit transmission tariff

The tariff increase mainly comes from heavy investments made at 220kV voltage level to increase security of supply.

Cost items included in calculation of the unit transmission tariff

ITC costs are considered as C as we are currently only connected to the German grid and there are currently no transit flows.

Voltage levels operated by TSOs

The 65kV grid operated by Creos is considered as distribution network.

Netting of flows for the application of transmission tariffs

There is no 220kV generation in Luxembourg, but if there was one, only load would be considered in the settlement. This principle is also applied for lower voltage levels.

FYROM

Unit transmission tariff

There are no 220kV lines in our system.

Components of the calculated unit transmission tariff

All incomes in MEPSO (such as income from congestion management), and also all costs (such as investments, operational and maintenance costs, depreciations, losses, ITC) are calculated. The revenue from both of them is taken into account by the Regulatory Authorities, when approving the methodology for calculating transmission tariff for the next year. That's the reason for the difference between last and this year.

Montenegro

Main Characteristics

The last year we did have charges component of generation. For this regulation period for 2016 year, we have 33.49% generation as above table present.

Components of the calculated unit transmission tariff

Country remarks increase UTT for 2016 has done due to investment to internal infrastructure (two new substation, reconstruction one substation, 2 new line between substation...), for reason preparing transmission network for new windturbine park and create conditions for connection of power systems of Italy and Montenegro (substation 400/110/35kV Lastva).
Netherlands

Main Characteristics

As of 2015 the transmission and system services are charged based on a combination of contracted peak capacity and monthly measured peak load. Therefore the system services are also recovered through the transmission tariffs.

Load that uses the grid for less than 600 hours has a special (reduced) tariff

Unit transmission tariff

In 2016 TenneT and ACM signed the contract 'bevoegdheden overeenkomst' which stipulates that existing cross border congestion revenues will be used to reduce tariffs as of 2017. Cross border interconnections will be funded in accordance with the existing regulatory framework going forward. Furthermore ACM has taken two PCI decisions to ensure that projects under development (COBRA & Doetinchem-Wesel) would not be negatively affected by this transition. As part of its tariff proposal 2016 TenneT already anticipated this arrangement and used EUR 130 mio to reduce the tariffs. As the agreement refers to the EHV network this amount was used to lower tariff income from regular transmission services in 2016. In 2015 TenneT also used an amount of EUR 45 mio to neutralise the tariff increasing implications of Repayment of System Services in the period 2000-2011 in amount of EUR 45 million. In 2016 the payments were EUR 36 mio, which were not specifically neutralised. The aforementioned changes in methodology result in a higher amount of auction receipts used for tariff reduction (EUR 130 2016 mio vs EUR 45 mio 2015) and a different allocation of the transmission and system services tariffs.

Components of the calculated unit transmission tariff

The re-allocation of components is mostly driven by the use of cross border congestion revenues to lower tariffs for infrastructure in 2016, whereas they were used to lower specific costs of system services in 2015. Furthermore the losses in 2015 were affected by settlements of previous periods.

Cost items included in calculation of the unit transmission tariff

The net benefit of ITC in the tariffs of 2016 amounts to EUR 2 mio (net benefit of EUR 15 mio in 2015).

The net benefit of system balancing in the tariffs of 2016 amounts to EUR 26 mio (net benefit of EUR 24 mio in 2015).

The net benefit of cross border congestion management amounts to EUR 130 mio in 2016 (net benefit of EUR 45 mio in 2015).

Voltage levels operated by TSOs

In the Netherlands the EHV charge is for 220 / 380 kV networks and the HV charge is for 110/150 kV networks. So the combination 220-150 kV is not common in the Netherlands. Hence there is a mismatch between the breakdown of the assets classes and the tariffs. The EHV (NL definition) assets are 32% of the total kilometers operated, whereas HV represents 68% (NL definition).

Other regulatory charges not directly related to TSO activities

TenneT TSO B.V. does not report any non-TSO costs, as TenneT is not involved with the collection of RES support / energy taxes. In the Netherlands the supplier model is applied, which implies that the Consumers receive one bill, for electricity, transport and taxes, which is provided by the Supplier of electricity. The TSO invoices the transmission expenses to the DSOs and to industrial parties directly connected the TenneT network, without consideration of taxes or other costs. The large industrial consumers whom are directly invoiced by TenneT are required to submit a declaration for energy taxes by themselves.

Netting of flows for the application of transmission tariffs

In NL the G charge does not apply, there could however be infeed from existing load clients on the EHV and HV networks. The tariff is based on the measured peak volume in any month. The peak is assessed by using the sum of the peak values (measured periods of 15 min in the month). In practice this means that infeed and outflows within the connection point, which occurs
simultaneously are netted against one and other.

Northern Ireland

Main Characteristics

Seasonal price signal is implemented only on Load. Locational price signal is implemented on Generation.

Norway

Main Characteristics

Price signals

Norwegian Transmission tariffs consists of the following components:

- Energy component (Loss element) and Fixed component.
 - The energy component has an element of localization signal in the "marginal loss factor" (MLF).
 - MLF is the same for Generation (G) and Consumption (L).
 - MLF is calculated for every connection point in the grid on a weekly basis. Differentiation Day and Night/Weekend (See map attached)

- Fixed components shall cover the remaining costs within the income cap.
 - The fixed component for G has no locational signals.
 - The fixed component for L has an element of localization signal in the so called "k-factor". The k-factor is constructed so that consumption in the same connection point as production become a lower tariff than other consumption.

Unit transmission tariff

The Transmission Grid in Norway consists of about 11,000 km of high-voltage power lines and about 200 connection points (stations). The voltage level in the Transmission Grid is mainly 420-300 kV, but in some parts of Norway - particularly in the North, the voltage level of the transmission grid is 132 kV.

Norwegian Transmission Tariffs are independent of voltage level and utilization time.

Energy and Power related components

Transmission tariffs do not include any non-TSO costs.

Poland

Voltage levels operated by TSOs

The total reported value "330 kV and above" include 42,80% of circuits 400 kV and 0,80% of circuits 750 kV.

The other voltage are 220 kV (55,85%) and 110 kV (0,55%).

Netting of flows for the application of transmission tariffs

Transmission tariff system doesn't provide settlements with generators (G tariff = 0). Netting flows is applied to settlements between TSO and DSO and final consumers connected to transmission network. In case the total feed-in energy to transmission network in PoD in certain month is greater then total energy taken-off transmission grid in this point, monthly charge for DSO/final consumer is zero.

Portugal

Unit transmission tariff

Concerning non-TSO, the tariff structure by voltage level is published by the government every year. The main changes from last year are:

- The Islands' tariff convergence costs had an impact of -0,79 €/MWh.
- The surplus costs for the remaining Power Purchase Agreements (PPAs) had an impact of -
2,74 €/MWh.

For TSO variation, there was a reduction on tariff deviations to be recovered, with an impact of -0,24 €/MWh.

Components of the calculated unit transmission tariff

Costs for losses and system-services costs are not recovered by a regulated tariff, but are recovered in the energy price. They have been included in this overview only for comparison purposes.

Cost items included in calculation of the unit transmission tariff

Costs for losses and system-services costs are not recovered by a regulated tariff, but are recovered in the energy price. They have been included in this overview only for comparison purposes.

Romania

Cost items included in calculation of the unit transmission tariff

Congestion management (cross-border) refers to income earned by the TSO from the allocation of cross-border capacity. The costs incurred in the operation development of cross-border interconnections are recovered through general OPEX and CAPEX allowances i.e. together with non-cross-border network assets (maintenance of cross-border assets is included in the Controllable OPEX allowance, investment in cross-border assets is recovered through the RAB allowance). There are no cross-border re-dispatch/counter-trading mechanisms in place.

Pursuant to Regulation (EC) 714/2009, the NRA can split the amount of income earned by the TSO from cross-border congestions into two parts: (i) part that is used to finance future cross-border investment, (ii) part that is used to decrease the tariff.

Netting of flows for the application of transmission tariffs

Provided the user (generator) takes electricity from the grid (from the same node or from different nodes as compared to the node where they inject into the grid) to power their equipment (generation facilities), both G and L charges are applied against the corresponding injection/extraction volumes.

Slovakia

Unit transmission tariff

In the conditions of the Slovak TSO, the calculated average price of the entities connected to the transmission system fails to correspond to the real average prices applied with the entities connected to the transmission system. The real price is lower by approx. 1,54 €/MWh in the year 2015 and by approx. 1,12 €/MWh in the year 2016. It is a consequence of the applied methodology based on which the average prices in this report are being calculated.

When comparing average prices, it is necessary to also consider the fact there are various approaches to inclusion of prices for ancillary services in tariffs for the system services in different countries, what means that the price in some countries does not include the ancillary services which are included in the price of the Slovak TSO.

The main reason on-year decline in the tariffs were differences between the designated and the actual costs and revenues in recent years, which are included in the tariff for the system services and on-year decline in the depreciation expenditures, which are included in the tariff for infrastructure.

Other regulatory charges not directly related to TSO activities

Slovak TSO doesn't collect any tax or additional fee for the RES support.
Slovenia

Energy and power related components

In 2016 UTT ratios have significantly changed due to lowering tariff for power component and taking into account relief for RES contribution.

Voltage levels operated by TSOs

400kV: 669 km
220kV: 328 km
110kV: 1,866 km

Spain

Main Characteristics

Only access tariffs and system operator charges for generation and demand are considered in Table 4.1. Losses and system services are not included in this calculation, as they are recovered through the energy market.

Unit transmission tariff

Apart from some Non-TSO costs detailed in Appendix 6, it is not possible to split the Spanish UTT into TSO and non-TSO related charges. The reason is that according to the Spanish legislation some non-TSO costs (e.g. those due to renewable support schemes) are allocated through the access tariffs without any specific differentiation per tariff. Therefore, the TSO cost part of the Spanish UTT shown in sections 6 and 7 of this Overview also includes regulatory charges not directly related with TSO activities (i.e. non-TSO costs).

Until 2014, interruptibility costs in Spain were charged to demand through the corresponding access tariff. Thus, interruptibility costs were one of the abovementioned non-TSO costs which were not explicitly shown in the access tariff. Since 2015 interruptibility costs have been charged through the energy market. For consistency with past data, interruptibility costs continued to be included in the UTT within the system services category in 2015 and preliminary data of 2016. After careful review, the alignment with charges included by other countries and with the TTO methodology itself has been thought to be a preferable line of consistency. Consequently, interruptibility costs have been removed from the calculation of the Spanish UTT.

Energy and Power related components

Unlike Table 4.1, data in Chart 7.1 is computed on the basis of the Spanish UTT.

Range of components paid by generators and consumers

Data in Chart 7.2 reflect two charges applied to generators:
- The charge corresponding to the access tariff for generators (0.5 €/MWh);
- A fee paid by generators above 1 MW of installed capacity in order to finance system operator´s activities. The fee depends on their available capacity.

Components of the calculated unit transmission tariff

In Chart 7.6 the “Losses” and “System services” components show 2016 figures that have been provided only for comparison purposes and consistency with the methodology of this Overview, despite the fact that they are not included in the Spanish transmission tariff (they are recovered through the energy market). The share of the Spanish UTT marked as “Infrastructure” includes both TSO and non-TSO related charges. As explained above, the reason is that according to the Spanish legislation some non-TSO costs (e.g. those due to renewable support schemes) are allocated through the access tariffs without any specific differentiation.

Cost items included in calculation of the unit transmission tariff

System services and losses are not included in the Spanish transmission tariff because they are recovered through the energy market. 2016 figures for system services and losses in Spain have been included in the calculation of the UTT only for comparison purposes. This is shown in Table 5.1 through the legend “estimated”.

Other regulatory charges not directly related to TSO activities
It is not possible to split the Spanish unit transmission tariff into non-TSO related charges as detailed in Table A.6. The reason is that according to the Spanish legislation some non-TSO costs (e.g. those due to renewable support schemes) are allocated through the access tariffs without any specific differentiation. Therefore only non-TSO costs specifically differentiated in the Spanish legislation can be classified.
Sweden

Main Characteristics

40% of primary reserve.

Switzerland

Main Characteristics

There is a separate tariff for losses as well as for system services.

Unit transmission tariff

In Switzerland there is no individual consumer connected to the EHV grid (only generators, DSOs and the national railway operator SBB). Thus the figures shown are for a virtual consumer connected to the EHV grid with no underlying network or connected generation. From 2016 onwards TSO costs increased due to a change in calculation method. This relates to the fact how the fixed basic charge which is charged per connection point has been taken into account. DSOs with underlying generation are only charged a reduced fixed basic charge in proportion to the size of underlying generation. This reduction is not applicable for a virtual consumer connected to the EHV grid with no attached generation. Non-TSO costs increased due to higher RES charges.

Components of the calculated unit transmission tariff

- Infrastructure tariff increase due to lower planned contribution of congestion rents. Increase in non-TSO cost due to increasing renewables subsidy (KEV).

Other regulatory charges not directly related to TSO activities

RES charges shown as Non-TSO costs are collected by the TSO in a separate invoice. These charges equal to the full RES-surcharge in Switzerland. A reduction of this surcharge is available for energy intensive consumers. The base user for the TTO is not deemed to be such an energy intensive consumer. Costs billed to TSO by NRA and energy ministry are included in the transmission tariff. Non-TSO costs billed to TSO by NRA and energy ministry are including in the transmission tariff.

Netting of flows for the application of transmission tariffs

Monthly netting between G and L is performed only with regards to calculation of fixed basic charge. If for the last 12 months sum of G is larger than 4 times the sum of L no fixed basic charge needs to be paid in the actual month.
Appendix 2: Voltage levels operated by TSOs

Table A.2. Voltage levels operated by TSOs

<table>
<thead>
<tr>
<th>Country</th>
<th>330 and above</th>
<th>220 - 150</th>
<th>132 - 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>34%</td>
<td>47%</td>
<td>19%</td>
</tr>
<tr>
<td>Belgium</td>
<td>15%</td>
<td>47%</td>
<td>38%</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>14%</td>
<td>24%</td>
<td>62%</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>17%</td>
<td>19%</td>
<td>64%</td>
</tr>
<tr>
<td>Croatia</td>
<td>17%</td>
<td>16%</td>
<td>67%</td>
</tr>
<tr>
<td>Cyprus</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>64%</td>
<td>35%</td>
<td>2%</td>
</tr>
<tr>
<td>Denmark</td>
<td>28%</td>
<td>48%</td>
<td>24%</td>
</tr>
<tr>
<td>Estonia</td>
<td>32%</td>
<td>3%</td>
<td>65%</td>
</tr>
<tr>
<td>Finland</td>
<td>33%</td>
<td>15%</td>
<td>53%</td>
</tr>
<tr>
<td>France</td>
<td>21%</td>
<td>26%</td>
<td>53%</td>
</tr>
<tr>
<td>Germany</td>
<td>61%</td>
<td>39%</td>
<td>0%</td>
</tr>
<tr>
<td>Great Britain</td>
<td>53%</td>
<td>28%</td>
<td>20%</td>
</tr>
<tr>
<td>Greece</td>
<td>28%</td>
<td>72%</td>
<td>0%</td>
</tr>
<tr>
<td>Hungary</td>
<td>67%</td>
<td>29%</td>
<td>4%</td>
</tr>
<tr>
<td>Iceland</td>
<td>0%</td>
<td>27%</td>
<td>74%</td>
</tr>
<tr>
<td>Ireland</td>
<td>11%</td>
<td>29%</td>
<td>60%</td>
</tr>
<tr>
<td>Italy</td>
<td>17%</td>
<td>39%</td>
<td>44%</td>
</tr>
<tr>
<td>Latvia</td>
<td>26%</td>
<td>0%</td>
<td>74%</td>
</tr>
<tr>
<td>Lithuania</td>
<td>29%</td>
<td>0%</td>
<td>71%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>FYROM</td>
<td>27%</td>
<td>0%</td>
<td>73%</td>
</tr>
<tr>
<td>Montenegro</td>
<td>23%</td>
<td>28%</td>
<td>49%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>24%</td>
<td>52%</td>
<td>25%</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>0%</td>
<td>38%</td>
<td>62%</td>
</tr>
<tr>
<td>Norway</td>
<td>73%</td>
<td>4%</td>
<td>24%</td>
</tr>
<tr>
<td>Poland</td>
<td>44%</td>
<td>56%</td>
<td>1%</td>
</tr>
<tr>
<td>Portugal</td>
<td>30%</td>
<td>70%</td>
<td>0%</td>
</tr>
<tr>
<td>Romania</td>
<td>56%</td>
<td>44%</td>
<td>0%</td>
</tr>
<tr>
<td>Serbia</td>
<td>18%</td>
<td>21%</td>
<td>62%</td>
</tr>
<tr>
<td>Slovakia</td>
<td>68%</td>
<td>29%</td>
<td>3%</td>
</tr>
<tr>
<td>Slovenia</td>
<td>23%</td>
<td>11%</td>
<td>65%</td>
</tr>
<tr>
<td>Spain</td>
<td>49%</td>
<td>45%</td>
<td>6%</td>
</tr>
<tr>
<td>Sweden</td>
<td>74%</td>
<td>26%</td>
<td>0%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>27%</td>
<td>73%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Remarks:

- Percentages are calculated as the ratio between the kilometers of circuits for each voltage level and total kilometers of circuits operated by each TSO.
- Values have been rounded.

Country remarks regarding France, Hungary, Italy, Luxembourg, Netherlands, Poland and Slovenia are to be found in Appendix 1.
Appendix 3: Comparison of network losses prices

Table A.3. Comparison of network losses prices

<table>
<thead>
<tr>
<th>Losses (€/MWh)</th>
<th>COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 1</td>
<td>Lithuania</td>
</tr>
<tr>
<td></td>
<td>Estonia</td>
</tr>
<tr>
<td></td>
<td>Croatia</td>
</tr>
<tr>
<td></td>
<td>Denmark</td>
</tr>
<tr>
<td></td>
<td>Montenegro</td>
</tr>
<tr>
<td></td>
<td>Serbia</td>
</tr>
<tr>
<td></td>
<td>Bosnia Herzegovina</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td></td>
<td>Ireland</td>
</tr>
<tr>
<td></td>
<td>Northern Ireland</td>
</tr>
<tr>
<td></td>
<td>FYROM</td>
</tr>
<tr>
<td></td>
<td>Switzerland</td>
</tr>
<tr>
<td></td>
<td>Finland</td>
</tr>
<tr>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td></td>
<td>Bulgaria</td>
</tr>
<tr>
<td>Below 1</td>
<td>Greece</td>
</tr>
<tr>
<td></td>
<td>Romania</td>
</tr>
<tr>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td></td>
<td>Iceland</td>
</tr>
<tr>
<td></td>
<td>Poland</td>
</tr>
<tr>
<td></td>
<td>France</td>
</tr>
<tr>
<td></td>
<td>Slovakia</td>
</tr>
<tr>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td>Portugal</td>
</tr>
<tr>
<td></td>
<td>Latvia</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
</tr>
<tr>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>Netherlands</td>
</tr>
<tr>
<td></td>
<td>Belgium</td>
</tr>
<tr>
<td></td>
<td>Hungary</td>
</tr>
<tr>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td></td>
<td>Slovenia</td>
</tr>
<tr>
<td></td>
<td>Luxembourg</td>
</tr>
<tr>
<td></td>
<td>Cyprus</td>
</tr>
<tr>
<td></td>
<td>Great Britain</td>
</tr>
</tbody>
</table>

Remarks:
- The base case is taken (see Section 3)

A country remark regarding France, Great Britain, Italy, Netherlands and Spain can be found in Appendix 1.
Appendix 4: Comparison of system services prices

Table A.4. Comparison of system services prices

<table>
<thead>
<tr>
<th>System Services (€/MWh)</th>
<th>COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Northern Ireland</td>
</tr>
<tr>
<td></td>
<td>Cyprus</td>
</tr>
<tr>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>Ireland</td>
</tr>
<tr>
<td></td>
<td>Slovakia</td>
</tr>
<tr>
<td></td>
<td>Lithuania</td>
</tr>
<tr>
<td></td>
<td>Switzerland</td>
</tr>
<tr>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
</tr>
<tr>
<td>Above 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Romania</td>
</tr>
<tr>
<td></td>
<td>Poland</td>
</tr>
<tr>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td>Belgium</td>
</tr>
<tr>
<td></td>
<td>FYROM</td>
</tr>
<tr>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td></td>
<td>Croatia</td>
</tr>
<tr>
<td></td>
<td>Denmark</td>
</tr>
<tr>
<td></td>
<td>Great Britain</td>
</tr>
<tr>
<td></td>
<td>Luxembourg</td>
</tr>
<tr>
<td></td>
<td>Bosnia Herzegovina</td>
</tr>
<tr>
<td></td>
<td>Hungary</td>
</tr>
<tr>
<td></td>
<td>Netherlands</td>
</tr>
<tr>
<td></td>
<td>Greece</td>
</tr>
<tr>
<td>1<----<3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Portugal</td>
</tr>
<tr>
<td></td>
<td>Finland</td>
</tr>
<tr>
<td></td>
<td>Slovenia</td>
</tr>
<tr>
<td></td>
<td>Serbia</td>
</tr>
<tr>
<td></td>
<td>Bulgaria</td>
</tr>
<tr>
<td>0.5<----<1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>France</td>
</tr>
<tr>
<td></td>
<td>Iceland</td>
</tr>
<tr>
<td></td>
<td>Latvia</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td></td>
<td>Montenegro</td>
</tr>
<tr>
<td>Below 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estonia</td>
</tr>
</tbody>
</table>

Remarks:
- The base case is taken (see Section 3).
- These figures cover the system services listed in Table 4.1.

A country remark regarding France, Great Britain, Italy, Netherlands and Spain can be found in Appendix 1.
Appendix 5: Tariff areas in countries with generation/consumption tariffs with locational differentiation

Great Britain

Highest generation and lowest demand charges occur in the north (surplus area). Lowest generation and highest demand charges occur in the south (shortage area).

Chart A5.1 Great Britain

Ireland:

The GTUoS capacity charge is calculated individually for each generator based on the location of its connection to the system. This GTUoS charge is capacity based (i.e. based on MEC of generator), there is no energy (MWh) component for GTUoS. The GTUoS tariff has a locational element; which is calculated considering the usage of current generation on future network using a “reverse MW mile” methodology.
Northern Ireland:

The GTUoS capacity charge is calculated individually for each generator based on the location of its connection to the system. This GTUoS charge is capacity based (i.e. based on MEC of generator), there is no energy (MWh) component for GTUoS. The GTUoS tariff has a locational element; which is calculated considering the usage of current generation on future network using a “reverse MW mile” methodology.

Norway:

Two components of the Norwegian transmission grid gives location signals: energy component (loss element) and the fixed L-component.

The energy component has an element of localization signal in the “marginal loss factor” (MLF). MLF is the same for Generation (G) and Consumption (L). Calculation of the energy component is as follows: Marked price (€/MWh) • marginal loss factor (%) • energy consumption (L) or production (G) (MWh). MLF is calculated for every connection point in til grid on a weekly basis. (See map attached)

Fixed components shall cover the remaining costs within the income cap. The fix element for G has no locational signals. The fix element for L has an element of localization signal in the so called “k-factor”. K-factor is calculated on a yearly basis for each connection point. The k-factor is constructed so that consumption in same connection point as production become a lower tariff than other consumption. The k-factor is between 0.5 and 1. K-factor = 1 gives no tariff reduction. K-factor = 0.5 gives 50% tariff reduction.

Chart A5.1 Norway. Marginal Loss Factors (MLF) Average 2014-15

Romania:

Locational pricing is based on short-term marginal costs (the estimated impact the injection/off-take of the incremental unit of energy into/from the network in different system zones has on grid losses costs at the transmission network level). Both G and L energy charges vary by location (7 G zones and 8 L zones).

G tariffs only cover grid losses (caused by the injection of electricity into the grid). Grid losses caused by the extraction of electricity from the grid and all the remaining costs (OPEX and CAPEX) are allocated to L tariffs.
Sweden:

Power based charge is based on the latitude. For injection the charges is highest in most northern location. For outtake it is highest in most southern location.
Appendix 6: Other regulatory charges not directly related to TSO activities

In some countries base case users are obliged to pay charges that are not directly related to TSO’s activities but result from national/local regulation. These non-TSO costs are different in scope and are charged either through TSO tariffs or through separate charging mechanisms.

The table below summarizes the main features of the charges/costs not directly related to TSO activities (non-TSO costs) and their charging mechanisms in force. For the listed countries, these non-TSO charges/costs are included in the calculation of the Unit Transmission Tariffs:

Table A.6. Other regulatory charges not directly related to TSO activities

<table>
<thead>
<tr>
<th>Country</th>
<th>Cost item / Institution</th>
<th>Other regulatory charges not directly related to TSO activities</th>
<th>Charge level (€/MWh)</th>
<th>Paid by (who cover the cost)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>RES support mechanism</td>
<td>APG collects and passes through tariffs for RES support</td>
<td>1.43</td>
<td>L/G/DSO</td>
<td>APG collects and passes through tariffs for RES support from its directly connected customers. In the customer bill these tariffs are not recorded in the network cost section but in the taxes and levies section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>RES support mechanism</td>
<td>PSO for financing connection of offshore wind turbine parks & PSO for financing green certificates</td>
<td>3.889</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-RES support mechanism</td>
<td>PSO for strategic reserves (installed for adequacy purposes)</td>
<td>0.9972</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRAs/Other Institutions</td>
<td>Federal contribution</td>
<td>3.0033</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>RES support mechanism</td>
<td>The charge is paid by industrial consumers as a separate fee and by tariff customers as a component in a tariff price</td>
<td>18.83</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>NRAs/Other Institutions</td>
<td>All energy operators that carry out one or more energy activities, based on the licence for carrying out energy activities issued by HERA, pay 0.05% of their total income for previous year into HERA’s budget</td>
<td>0.01</td>
<td>L/DSO</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>RES support mechanism</td>
<td>RES-support (PSO-tariff) 31.34 €/MWh Administration costs regarding RES-support 0.27 €/MWh</td>
<td>31.61</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRAs/Other Institutions</td>
<td>Payment to the Danish Energy Regulatory Authority and to the Danish Energy Agency to cover their administrations costs</td>
<td>0.21</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>RES support mechanism</td>
<td>RES support mechanism, charged separately from the TSO invoice. Not considered as a part of TSO tariffs.</td>
<td>9.6</td>
<td>L/DSO</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Others</td>
<td>Peak load capacity fee.</td>
<td>0.09</td>
<td>L/DSO</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Others</td>
<td>For the base case it is 0.23 €/MWh in 2016 for industrial customers only (0 for distributors). In 2005, the pensions system of people working in the gas and electricity industry was globally reformed. For the transmission tariff, it implied</td>
<td>0.231468</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>
Germany

<table>
<thead>
<tr>
<th>RES support mechanism</th>
<th>6.4</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Extra charge related to the connection of Offshore Windfarms to the grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For comparability reasons the report all RES support should be included in the report. Therefore also the general RES-support mechanism (so called “EEG Umlage”) is included in this section. However, the “EEG Umlage” in Germany is not and has never been a part of the regulated transmission activities and thus has never been included in the transmission tariffs invoiced by German TSOs. Costs of RES-support are allocated by German TSOs through a separate charge which does not include any TSO-costs. The value given here is the average value for a privileged industrial consumer in Germany. The base case for the defined Unit Transmission Tariff is deemed to be a privileged consumer. As the pricing level of each individual consumer is based on an individual approval of the relevant public authority the average value is the best estimate for a comparison. Further information is publicly available under https://www.netztransparenz.de/de/EEG-Umlage.htm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-RES support mechanism</th>
<th>0.55</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra charge for costs according to the German law for Combined Heat and Power Production Promotion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Extra charge for costs according to the German Grid Tariff Regulation Ordinance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Great Britain

<table>
<thead>
<tr>
<th>non-RES support mechanism</th>
<th>0.26</th>
<th>L/G</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 23.2% / L 76.8%. Assistance for Areas with High Electricity Distribution Costs. The intention of the AAHEDC Scheme is to reduce the costs to consumers of the distribution of electricity in certain areas. Currently the only Specified Area is the North of Scotland. National Grid therefore recovers an Assistance Amount through the Scheme, which is passed to the Relevant Distributor in the Specified Area, Scottish Hydro Electric Power Distribution Ltd. This enables distribution charges to be reduced.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NRAs/Other Institutions</th>
<th>0.16</th>
<th>L/G</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 23.2% / L 76.8%. NRA Licence Fees.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greece

<table>
<thead>
<tr>
<th>RES support mechanism</th>
<th>2.41</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the non TSO related costs, costs related to RES payments that are completely irrelevant to ADMIE are also included.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-RES support</th>
<th>4.14</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Service Obligations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanism</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>NRAs/Other Institutions</td>
<td>0.07 L</td>
<td>Regulatory Authority Support Cost</td>
</tr>
<tr>
<td>Hungary</td>
<td>RES support mechanism</td>
<td>7.12 L</td>
</tr>
<tr>
<td></td>
<td>non-RES support mechanism</td>
<td>6.43 L</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>0.22 L</td>
</tr>
<tr>
<td>Italy</td>
<td>Others</td>
<td>4.3 L</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>RES support mechanism</td>
<td>0.75 L</td>
</tr>
<tr>
<td></td>
<td>non-RES support mechanism</td>
<td>0.1 L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>RES support mechanism</td>
<td>0,173936 L/DSO</td>
</tr>
<tr>
<td></td>
<td>Stranded costs</td>
<td>2.13207 L/DSO</td>
</tr>
</tbody>
</table>
transmission network and DSOs at any voltage level (then DSO charge their final consumers).

<table>
<thead>
<tr>
<th>Country</th>
<th>Mechanism</th>
<th>Amount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portugal</td>
<td>non-RES support mechanism</td>
<td>2.1418</td>
<td>Capacity payments, Islands’ tariff convergence costs, Interruptibility</td>
</tr>
<tr>
<td></td>
<td>NRAs/Other Institutions</td>
<td>0.1758</td>
<td>Regulator costs</td>
</tr>
<tr>
<td></td>
<td>Stranded costs</td>
<td>-0.977472</td>
<td>Surplus costs for the remaining Power Purchase Agreements (PPAs)</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>0.333798</td>
<td>Hydro power station land</td>
</tr>
<tr>
<td>Romania</td>
<td>non-RES support mechanism</td>
<td>2.964175</td>
<td>Cogeneration</td>
</tr>
<tr>
<td>Serbia</td>
<td>NRAs/Other Institutions</td>
<td>0.023327</td>
<td>Tax for the financing of NRA (0.75% of Transmission tariff)</td>
</tr>
<tr>
<td>Slovenia</td>
<td>RES support mechanism</td>
<td>1.389957</td>
<td>Mechanism applied</td>
</tr>
<tr>
<td></td>
<td>NRAs/Other Institutions</td>
<td>0.3</td>
<td>Component</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>0.8</td>
<td>Component</td>
</tr>
<tr>
<td>Spain</td>
<td>non-RES support mechanism</td>
<td>0.000052 L</td>
<td>These costs are established as a % of the access tariff for demand as follows: 0.15% for NRA costs, which results in a charge of 0.0078 EUR/MWh for the base case users; 0.001% for the 2nd part of the nuclear fuel cycle, which results in a charge of 0.000052 EUR/MWh for the base case users; and 2.027% for the financing of the deficit, which results in a charge of 0.1053 EUR/MWh for the base case users.</td>
</tr>
<tr>
<td></td>
<td>NRAs/Other Institutions</td>
<td>0.00779 L</td>
<td>These costs are established as a % of the access tariff for demand as follows: 0.15% for NRA costs, which results in a charge of 0.0078 EUR/MWh for the base case users; 0.001% for the 2nd part of the nuclear fuel cycle, which results in a charge of 0.000052 EUR/MWh for the base case users; and 2.027% for the financing of the deficit, which results in a charge of 0.1053 EUR/MWh for the base case users.</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>0.105264 L</td>
<td>These costs are established as a % of the access tariff for demand as follows: 0.15% for NRA costs, which results in a charge of 0.0078 EUR/MWh for the base case users; 0.001% for the 2nd part of the nuclear fuel cycle, which results in a charge of 0.000052 EUR/MWh for the base case users; and 2.027% for the financing of the deficit, which results in a charge of 0.1053 EUR/MWh for the base case users.</td>
</tr>
<tr>
<td>Switzerland</td>
<td>RES support mechanism</td>
<td>12.1</td>
<td>Surcharges for Feed-in remuneration (KEV) and water conservation measures</td>
</tr>
</tbody>
</table>

Country remarks regarding Bulgaria, Cyprus, Greece, Hungary, Latvia, Netherlands, Slovakia, Spain and Switzerland are to be found in Appendix 1.
Appendix 7: First connection charges

The connection charges types are characterized by costs that are taken into account to calculate the connection charge. For the purpose of this Overview, first connection charges are defined as:

- **Super-shallow**: All costs are socialized via the tariff, no costs are charged to the connecting entity;
- **Shallow**: grid users pay for the infrastructure connecting its installation to the transmission grid (line/cable and other necessary equipment);
- **Deep**: shallow + all other reinforcements/extensions in existing network, required in the transmission grid to enable the grid user to be connected.

In case applied charging rules do not exactly suit any of the three above definitions, but are between any of them, it is reported as e.g. Super–shallow/Shallow, Shallow/Deep etc. with the corresponding explanation.

The table below summarizes the main features of charging mechanisms in force for first connection to transmission grid.

<table>
<thead>
<tr>
<th>Country</th>
<th>Charge Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Shallow</td>
<td>In form of building-cost contribution for generation or tariff for load. Tariff for load: - Network Level 1 - 8.70 €/kW - Network Level 2 - 9.80 €/kW</td>
</tr>
<tr>
<td>Belgium</td>
<td>Mainly Shallow</td>
<td>• Onshore: everything is socialized, except all installations between the grid user and the substation and the connection bay at the substation. • Offshore: idem. However, a support mechanism foresees in an additional subsidy for the cable connection up to 25 M€</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>Shallow</td>
<td>Charges are based on the actual costs. No differentiation of charges for L, G and DSO. No locational differentiation.</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Shallow</td>
<td>The price for connection is paid by the user, for installations up to the point of connection. The price for reinforcement of the grid is paid by the operator. There is no any different treatment of users.</td>
</tr>
</tbody>
</table>
| Croatia | Deep | G – pays for the infrastructure connecting its installation to the transmission grid and extensions in existing network L – pays according to formula $\text{NVN} = c_{\text{VN}} \cdot P$ (capacity kW \times 1350.00 HRK = 178.62 EUR/kW or actual costs if difference between formula and real costs is more/less than 20%)
 |
| Cyprus | Mainly Shallow | The connection cost includes all new infrastructure that will need be built, up to the point of connection, e.g. a new substation and transmission line. No other costs are charged, e.g. for upgrading existing equipment further into the transmission network. |
| Czech Republic | Shallow | No locational differentiation. Connection fees: 7401 €/MW for energy withdrawal (load) 18501 €/MW for energy injection (generation) |
| Denmark | Super Shallow to | In some cases charges are calculated to a
<table>
<thead>
<tr>
<th>Country</th>
<th>Shallow/Deep</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estonia</td>
<td>Deep</td>
<td>Necessary reinforcements in the grid are included in the connection fee.</td>
</tr>
<tr>
<td>Finland</td>
<td>Shallow</td>
<td>Standard fee based on average costs of connection infrastructure. No differentiation of charges for L, G, DSO. No locational differentiation.</td>
</tr>
<tr>
<td>France</td>
<td>Shallow</td>
<td>* G, L, DSOs: the connection is made to the nearest substation where the appropriate voltage level is available and where this connection is technically possible. No locational differentiation, charges based on actual costs. Generators pay 100% of the cost, consumers pay 70% of the cost of their main connection. * RES: network development costs due to RES integration are mutualized on a regional basis. No locational differentiation, charges based on actual costs.</td>
</tr>
<tr>
<td>Germany</td>
<td>Shallow to Super shallow</td>
<td>Charging is generally based on actual costs. Grid users pay for their own connection line and substation. General reinforcements of the grid are socialized via tariffs. No differentiation of charges for L, G or DSO.</td>
</tr>
<tr>
<td>Great Britain</td>
<td>Shallow</td>
<td>This applies to both generation and load and means that connection charges relate only to the costs of assets installed solely for, and only capable of use by, an individual user. Generators also pay for the infrastructure up to the first Main Interconnected Transmission Substation they connect to. All other assets are assumed to be shared and their costs are included in the wider locational transmission tariff.</td>
</tr>
<tr>
<td>Greece</td>
<td>Shallow</td>
<td>Grid users pay for the infrastructure connecting its installation to the transmission grid. The charge includes studies, materials check, construction, supervision and delivery costs. The costs depend on distance or voltage level and they differentiate according to the installation location characteristics (e.g. ground morphology) or any other special project requirements.</td>
</tr>
<tr>
<td>Hungary</td>
<td>Shallow/Deep</td>
<td>Charging is based on actual costs. Establishing a new connection for a generator incurs a maximum 100% of investment costs charged, same for a single customer is a maximum 70% or 1 million HUF/MVA (3215 EUR/MVA, exchange rate: 311.02 HUF/EUR), whichever larger. If the generator used at least 50% of renewable energy for its production per year, it pays only 70% of the investment costs, and if this value is at least 90%, it pays only 50% of the investment costs. Multiple generators and/or customers on the new connection are charged proportionally. No locational differentiation.</td>
</tr>
<tr>
<td>Iceland</td>
<td>Shallow/Deep</td>
<td>Charges are based on the actual costs and borne by the Producer (G) or a power intensive user (L).</td>
</tr>
<tr>
<td>Ireland</td>
<td>Shallow</td>
<td>All connecting parties pay for the connection to the system (using a Least Cost Chargeable methodology). Demand customers only pay 50% while generators pay 100% of connection charges.</td>
</tr>
<tr>
<td>Country</td>
<td>Depth</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Italy</td>
<td>Shallow</td>
<td>Connection of production plants - G: When first requesting the connection, applicants pay upfront Terna a fixed amount of 2,500€ to get a general appraisal of the possible connection solution. Once obtained the authorization, applicants pay upfront Terna an amount of 2500€ + 0.5 €/kW (max 50000€) for a more detailed project plan. Grid user bears costs for building the grid connection plant. Enhancements of the NTG are socialized in tariff. Reduced fees apply in case of connection of production plants powered by renewable sources and for high-performance co-generation plants. Connection of consumption units – L: Applicants pay Terna a connection fee equal to 50% of the expenditure for building grid connection plant including cost of the materials and labour costs as well as overheads, assumed equal to 20% of these amounts. Connection of DSO: The DSO/TSO that implements the connection plant recovers the incurred costs through tariff.</td>
</tr>
<tr>
<td>Latvia</td>
<td>Deep</td>
<td>Grid users build own connection line. All connection equipment and reinforcement are included in the connection fee. Producer (G) always has to compensate 100% from new connection charge. DSO must compensate 100% from new connection charge. For load increasing of existing connection DSO must compensate connection fee pro-rata with load increasing. Consumer (L) must compensate 100% of new connection charge and must compensate existing connection load increasing by pro-rata with load increasing, except consumers, who have special connection status issued by National Authority (Regulations on the Special Connection to the Electricity Transmission System). The Special Connection to the Electricity transmission system is allocated by Cabinet of Ministers. If the Consumer has the special connection case, then compensation costs from consumer side are: 66% with load ≥50MW and consumption ≥100000MWh in the nearest two years; 33% with load ≥75MW and consumption ≥150000MWh in the nearest two years; 0% with load ≥100MW and consumption ≥200000MWh in the nearest two years. Other charges are compensated from TSO side. No locational differentiation. Charging is based only on actual costs.</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Deep</td>
<td>100% of all actual connection costs, exception for the renewable generators - 40% of all actual connection costs.</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>Shallow</td>
<td>Grid users (L, G and DSO) pay the actual costs for their own connection line and substation. General reinforcements of the grid are socialized in the tariffs.</td>
</tr>
<tr>
<td>FYROM</td>
<td>Shallow</td>
<td>Grid user has to pay for its own connection line and substation, to meet security criteria.</td>
</tr>
<tr>
<td>Montenegro</td>
<td>Shallow</td>
<td>There is no difference in cost for L, G and DSO.</td>
</tr>
<tr>
<td>Country</td>
<td>Connection Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Shallow</td>
<td>The connection charge consists of the costs to connect the client's installation to the client's circuit end connecting to the TenneT station.</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>Shallow</td>
<td>Load and generation over 1MW pay 100% shallow connection costs. Connection costs will be based on out turn cost or a fixed quotation.</td>
</tr>
<tr>
<td>Norway</td>
<td>Shallow</td>
<td>Cost related customer-specific network facilities must be borne by the customer.</td>
</tr>
<tr>
<td>Poland</td>
<td>Shallow</td>
<td>The enterprise which is going to be connected pay for all the expenditures to build the connection site which contains the direct line and extension or rebuilding costs for the substation (if necessary) where connection takes place. The reinforcement and development of existing network is performed by TSO. Connection charges are: • Final customers (load) pay 25% of total investment expenditures. • RES units of installed capacity <=5MW pay 50% of total investment expenditures. • Co-generation units of installed capacity <=1MW pay 50% of investment expenditures. Other generators and distribution companies pay 100% of total investment expenditures. RES units of installed capacity <=40 kV don't pay connection charges.</td>
</tr>
<tr>
<td>Portugal</td>
<td>Super Shallow to partially Shallow</td>
<td>The grid user, either generator (G) or consumer unit (L), has to pay for the cost of the infrastructure needed to connect its installation to the transmission grid but the internal reinforcement/expansion of the grid is endorsed to TSO’s responsibility, in the case of G. The connection is made to the nearest substation where it is technically possible and where available capacity exists. For G, the available network capacities are defined in the NDP (National Development Plan) and in the annual document “Network Characterization”, according to Decree Law nº 215A and 215B/2012 from October 8th. For L, there is the obligation to connect, according to the Commercial Relationship Code and if internal grid development is needed, it is paid by L. After built, the connection facilities (lines, cables, equipment at substations, etc.) will be integrated in TSO asset; thus TSO is in charge of their O&M costs. Concerning the DSO reinforcement needs (there is just one in Portugal) all the costs are socialized via the tariff. The charges are based on the actual costs and no locational differentiation is applied.</td>
</tr>
<tr>
<td>Romania</td>
<td>Shallow/Deep</td>
<td>Connection equipment: the connecting entity (generator/load) fully covers the cost of the equipment that connects their installation to the transmission grid. Upstream grid reinforcement: costs associated to upstream grid reinforcements required to safely connect new users (generators/loads) are: • shared between the TSO and generators connecting to the grid; • fully paid by the TSO (and therefore socialized across all transmission users through the transmission tariff) in case of loads connecting to the grid. Connection charge is calculated based on actual costs (on a case by case basis).</td>
</tr>
<tr>
<td>Country</td>
<td>Type</td>
<td>Regulations</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Serbia</td>
<td>Shallow/Deep</td>
<td>Shallow: generators and DSOs have to pay fee for financing of the connection lines aimed to fulfill grid security criteria (the most frequent case is the building of ‘in-out’ connection toward an existing line) and for substation. Deep: industrial customers have to pay the fee for the further network development if such is required. Connection fees are: 16030 € per approved power in MW for 110kV level, and 20360 € per approved power in MW for 220kV level. Note: generally, in 110 kV network, grid users keep ownership over 110/x kV substations.</td>
</tr>
<tr>
<td>Slovakia</td>
<td>Shallow to Super shallow</td>
<td>Distribution companies pay 40% of actual costs for the infrastructure connecting its installation to the transmission grid and 60% of actual costs for the infrastructure connecting its installation to the transmission grid are socialized via the tariff of TSO (40% shallow and 60% super shallow). Direct customers a generators connected on the TSO pay 100% of actual costs for the infrastructure connecting its installation to the transmission grid (100% shallow).</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Shallow</td>
<td>L: pays the costs of the first connection for power specified in permission of connection. G: pays the costs of the first connection in accordance of consumed power. DSO: does not pay any costs for the first connection. There is no locational differentiation. Charging is based on tariff charges.</td>
</tr>
<tr>
<td>Spain</td>
<td>Shallow</td>
<td>Promoter (generator or consumer) pays for the infrastructure necessary to be connected to the transmission grid. All reinforcements that are needed as a consequence of this new connection are included in the National Planning and thus socialized via tariffs.</td>
</tr>
<tr>
<td>Sweden</td>
<td>Deep</td>
<td>Generators or consumers connecting to the grid will pay costs related to this (lines, sub stations, etc.)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Shallow</td>
<td>No first connection charge for connection assets which can be used by other grid users.</td>
</tr>
</tbody>
</table>
Appendix 8: Special tariffs

Special tariff conditions can exist in some countries e.g.:

- Special tariff conditions for low utilization (auto production or own production units behind the connection site, second connection used for emergency situations, pumping stations...);
- Special tariff conditions for high consumption (for instance over 100 GWh per year);
- Special tariff conditions for users fulfilling defined technical criteria of its production/connection site;
- Special tariff conditions for any group of users (e.g. any public utilities, army, etc).

The table below summarizes different charging rules/tariff conditions or exemptions from rules defined as "standard" and applied by TSO’s for specific groups of network users.

<table>
<thead>
<tr>
<th>Country</th>
<th>Special Tariff Conditions</th>
</tr>
</thead>
</table>
| Austria | 1) For pump storage: the grid usage charge for pumped storage plants for all network levels is:
- energy: 0.075 Cent/kWh;
- power: 100.00 Cent/kW.
 2) Reduced infrastructure tariff for negative ancillary services
 called energy: 0.075 Cent/kWh
 additional power: 100.00 Cent/kW. |
| Belgium | Two kind of special tariffs exist:
 (1) For an "additional" access point for the same electrical facilities of a grid user, there is a special tariff for the term "power put at disposal". The additional access point can be on an ongoing basis (standard operations) or on an
 occasional basis (as a reserve), with no time limit.
 (2) For the mobile charges of the railway company, the power terms are reduced by 7%. |
| Bosnia and Herzegovina | No. |
| Bulgaria | No. |
| Croatia | No. |
| Cyprus | No. |
| Czech Republic | No. |
| Denmark | 1) For grid companies with autoproducers with net settlement, an adjusted settlement basis is applied that takes into account that the autoproducers shall not pay a grid tariff or a system tariff for the part of their consumption that they
 cover by their own production.
 2) Customers with their own 132 kV transformers with settlement on the 132 kV side pay a reduced grid tariff.
 3) A reduced PSO tariff is used for autoproducers for the part of their consumption that they cover by their own production. The reduction
 corresponds to the costs relating to subsidies for renewable energy and local CHP units. |
| Estonia | No. |
| Finland | No. |
| France | * Specific tariff for a second connection used for emergency situations.
* Specific tariff for multi-locations customers. This tariff considers a unique virtual
site, summing all load of the concerned sites, and calculating an annual fee proportional of the necessary length of network to connect these sites.
* A DSO directly connected to the lowest voltage level of a transformer that belongs to the TSO can use the tariff of the highest voltage level of this transformer.
* A DSO owning lines of the same voltage level as the lines of the TSO it is connected to benefits from a discount.
* When the actual temperatures are very low compared to average temperatures, DSOs may benefit from a discount on their capacity overrun.
* Occasional planned overrun of contracted capacity: during summer, a customer can benefit from a discount on its tariff during 2 weeks, provided it informs the TSO in advance.
* Industrial customers connected to the transmission grid can benefit from a reduction of their transmission invoice from 5% to 90% depending on their demand (annual consumption higher than 10 GWh, annual usage duration higher than 7000 hours, usage duration during peak period vs. usage duration during off-peak period). The amount of tariff reduction depends on whether the customer is electrointensive or not and whether it has storage capabilities or not. The conditions to be considered as electrointensive and to benefit from tariff reduction and defined by decree.

Germany	Monthly power price: for final customers with a temporary high power consumption and an obvious lower or no power consumption in the remaining time, a monthly price instead of a yearly price for the power component is offered.
	Individual tariff: for final customers with a peak load occurring at a different time period than the maximal power in the grid, an individual tariff is offered. The individual tariff must not be lower than 20% of the published regular tariff.
	Grid fee reduction: for energy intensive customers (typically heavy industry customers) with energy consumption that exceeds 7 000 full load hours per year and 10 GWh there is a fee reduction. Depending on full load hours, the grid fee has to be at least 10, 15 or 20% of the normal grid fee.
	Grid fee exemption: for pump-storage power stations a grid fee exemption is possible for 10 years if the amount of storage-energy has increased by 5% minimum. The agreement on both for individual tariffs and grid fee reduction and exemption requires the approval of the regulator.

| Great Britain | Small Generators' Discount: €0.477386/kW discount to generation tariff and €0.652078/MWh discount to energy charge for generators below 100MW; The Assistance for areas with high electricity distribution costs special tariff recovers an assistance amount, which is passed to the Relevant Distributor in certain areas with high distribution costs: €0.294535/MWh. |

| Greece | No. |

| Hungary | No. |

Iceland	Interruptible load (curtailable transmission) Customers with curtailable transmission pay an energy charge but no capacity charge is levied and a 17% discount is granted on the charge for ancillary services.
	Supply voltage discount A discount of 5% is granted on the capacity charge and energy charge pursuant to where electricity is delivered to distributors at a nominal voltage over 66 kV.
	Delivery charge discount A discount is granted on the out-feed delivery charge if the maximum power out-feed is as follows: In the range of 3.0 – 6.0 MW the discount is 40%. In the range of 1.0 - 3.0 MW the discount is 70%. DSO Delivery charge discount
Distribution system operators shall pay out-feed charges for electricity produced in power plants connected to Landsnet through a distribution system, as follows:
1. For energy produced in power plants under 1.42 MW, no out-feed charge is paid.
2. For electricity produced in power plants in the size range of 1.42-3.1 MW, no out-feed charge is paid at the lower limit of the range, but the charge then increases proportionally up to 60% of the full out-feed charge at the upper limit.
3. For energy from power plants of 3.1 – 10 MW, 60% of the full out-feed charge is paid.

<table>
<thead>
<tr>
<th>Country</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>Autoproducers pay capacity based TUoS charges on the greater of either their contracted Maximum Import Capacity or contracted Maximum Export Capacity, not both.</td>
</tr>
<tr>
<td>Italy</td>
<td>Energy withdrawals for generation plants auxiliary services and for hydro pumping storage plants are exempt (if specific predetermined conditions are met) from transmission and distribution fees.</td>
</tr>
<tr>
<td>Latvia</td>
<td>No.</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Zero transmission tariff in pumping mode for hydro pump power plant. Zero tariff for system services component for DSO grid losses.</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>Distribution companies don’t have the binominal tariff respecting their simultaneity factor related to the power peak of the grid. They pay a stamp fee, independent of the energy consumption.</td>
</tr>
<tr>
<td>FYROM</td>
<td>No.</td>
</tr>
<tr>
<td>Montenegro</td>
<td>No.</td>
</tr>
<tr>
<td>Netherlands</td>
<td>There is a special tariff for users with maximum 600 hours. Furthermore there is a volume discount for users with a stable base load profile in the off peak hours.</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>No.</td>
</tr>
</tbody>
</table>
| Norway | Interruptible load
Special tariffs is offered for interrupt load according to agreements. The tariffs are from 5% to 95 % of the regular L-tariff level depending on the kind of agreement.

Power intensive industry
Consumers with high and stable consumption (Load >15 MW in more than 5000 hours per year) gets a lower price on the basis of defined criteria. The reduction is about 70% compared to regular load. |
| Poland | A final consumer is entitled to pay 10% of the quality charge if in the preceding year he fulfilled the following technical and economic conditions:
• yearly consumption was not less than 400 GWh;
• utilization of the contractual power was not less than 50%;
• overall costs related to electric energy (purchase and transportation) constitute not less than 15% of the total production costs.
A final consumer is entitled to pay 27% of the transition charge (covering stranded costs) if in the preceding year he fulfilled the following technical and economic conditions:
• yearly consumption was not less than 400 GWh;
• utilization of the contractual capacity was not less than 60%;
• overall costs related to electric energy (purchase and transportation) constitute not less than 15% of the total value of their production.
A final consumer is entitled to pay: (i) 80% or (ii) 60% or (iii) 15% of the RES charge if its electricity intensity ratio is respectively: (i) not lower than 3% and not higher than 20% or (ii) higher than 20% and not higher than 40% or (iii) higher than 40%. Electricity intensity ratio is calculated as share of costs of electricity consumed for own use (cost of electricity, including the cost of fulfilling the RES obligations and the cost of all the network charges) in gross value added. The ratio is calculated as the arithmetic average of the three years preceding the year of obligation. If the business is conducted by less than 3
years, the period of business activity should be taken into account.

<table>
<thead>
<tr>
<th>Country</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portugal</td>
<td>Social tariff for vulnerable costumers (domestic consumers with a contracted power less than 6.9 kVA, who benefit from social insertion income, invalidity and old age social pension). For 2016, the discount is 1.18€/kVA at the fixed term of the access tariffs.</td>
</tr>
<tr>
<td>Romania</td>
<td>No.</td>
</tr>
<tr>
<td>Serbia</td>
<td>For Railways power is charged by total maximum demand, not by maximum demand per substation. Pump storage HPP are not subject of transmission tariff for load they consume. Generator’s ancillary supply is subject of transmission tariff but only for its active energy part.</td>
</tr>
</tbody>
</table>
| Slovakia | Consumers connected directly to transmission system pay in 2016:
- tariff for system services discounted by 95% if their utilization of maximum contractual capacity in 2014 were higher than 6800 hours (average utilization of the contractual capacity was not less than 77.63%) and perpetual deviation of the subject of settlement was lower than 0,025;
- tariffs for access to transmission system and its management:
 • discounted by 30% if their maximum contractual capacity in 2016 is higher than 200 MW and their energy supplied over transmission system in 2014 was higher than 1 TWh,
 • discounted by 50% if their maximum contractual capacity in 2016 is higher than 250 MW and their energy supplied over transmission system in 2014 was higher than 2 TWh,
 • discounted by 70% if their maximum contractual capacity in 2016 is higher than 350 MW and their energy supplied over transmission system in 2014 was higher than 2.5 TWh. |
| Slovenia | No. |
| Spain | There is a special access tariff (€) for pumped hydro electricity storage facilities. This tariff equals the conventional access tariff for generation (0.5 €/MWh) multiplied by a correction factor (MWh) that takes into account both the electricity production and the energy consumed during the pumping process, as follows:
\[
\text{AccessTariff_forPumpedHydroStorage} = \text{AccessTariff_forGenerators} \times \left[\text{Ept} + \left(\text{Eb}(1-r) \right) \right] \\
\text{Where Ept is the total energy production which is fed into the system; Eb is the energy consumed during the pumping process for exclusive use of the generation of electricity; and r is the efficiency of the storage facility, which has been established at a value of 0.7.} \\
\text{[Disp. Adicional Segunda, Real Decreto 1544/2011].} \\
|
| Sweden | No. |
| Switzerland | Bundling of connection points for national railway operator (SBB). |
Appendix 9: Treatment of Final Customers vs Distribution System Operators

Both DSOs and final customers are seen as Load (L) from TSO’s perspective.

There might be different tariffs, charges calculation procedures or settlement rules for final customers and distribution system operators. Justification for different treatment might be the load volume of a given network user, the number of connection points to the transmission grid (simultaneous off-take), the network configuration conditions and the co-operation scheme of DSOs with the TSO (often DSOs’ network plays a role of sub-transmission grid).

The table below summarizes the main features of different treatment /charging mechanisms of final customers and distribution system operators per TSO.

Table A.9. Treatment Final Customers vs Distribution System Operators

<table>
<thead>
<tr>
<th>Country</th>
<th>Different treatment between final customer and distributor</th>
<th>Difference from the total charge applied to the base case scenario (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>No</td>
<td>N/A since there are no tariffs for DSOs for the studied voltage levels.</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>No</td>
<td>TSO charges only transmission fees for customers connected directly to TSO network. For customers that are not directly connected to TSO network transmission fee is collected by DSO and transferred to the TSO.</td>
</tr>
<tr>
<td>Cyprus</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>No</td>
<td>The TSO does not charge the costumer directly. It is the DSO that charge the costumers.</td>
</tr>
<tr>
<td>Estonia</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Yes</td>
<td>* A DSO directly connected to the lowest voltage level of a transformer that belongs to the TSO can use the tariff of the highest voltage level of this transformer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* A DSO owning lines of the same voltage level as the lines of the TSO it is connected to benefits from a discount.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* When the actual temperatures are very low compared to average temperatures, DSOs may benefit from a discount on their capacity overrun.</td>
</tr>
<tr>
<td>Germany</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>Yes</td>
<td>The transmission and system operation tariff is regulated by the type of</td>
</tr>
<tr>
<td>Country</td>
<td>Decision</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

LV, MV, HV, EHV final users (different from LV domestic users) pay Distributors the "TRAS component" covering transmission costs. The TRAS component is split into two different subcomponents:
- TRAS\text{E}: energy (volume) component, in "cent. €/kWh" --> it is applied to LV, MV, HV, EHV users;
- TRAS\text{P}: power (capacity) component, in "cent. €/kW" --> it is applied to HV, EHV users.

LV domestic users pay Distributors different tariff components, structured in three different subcomponents (a.k.a. "t" components).

Distributors pay to the TSO the "CTR components" (infrastructure component of Transmission Tariff) for power and energy withdrawal from NTG. The CTR component is split into two different subcomponents:
- CTR\text{E}: energy (volume) component, in "cent. €/kWh" --> it is applied to the sum of the energy withdrawn from NTG and the energy injected in the "NTG virtual interconnection points" (i.e. the energy injected in the distribution grid at HV customers. Distributors pay a higher tariff to MAVIR. The TSO's income of the additional part is repaid in another sum - which is calculated with a predetermined percentage by Regulator’s decision (HEA) - for the distributors. Thus:

Transmission and system operation charge for eligible costumer:
4.00 €/MWh

Transmission and system operation charge for distributor:
9.01 €/MWh

Income of the positive difference of Transmission and system operation charge for distributors is paid back for the distributors in percentage as a rebate.

Calculation: \[(\text{injection} /\text{kWh}/ \cdot 500.6 \text{ c €}) \cdot (n1+n2+n3+... \%)]
\(\Sigma n = 100 \%\)

Charge for ancillary services is the same for every company.

Difference from the total charge applied to the base case scenario:
125.3 \% regarding transmission and system operation tariff, regarding both tariff elements 90.9 \% before rebate.
<table>
<thead>
<tr>
<th>Country</th>
<th>Access Tariffs</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latvia</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>Yes</td>
<td>109%.</td>
</tr>
<tr>
<td>FYROM</td>
<td>No</td>
<td>TSO charges only transmission fees for customers connected directly to TSO network. For customers who are not directly connected to TSO network, transmission fee is collected by DSO.</td>
</tr>
<tr>
<td>Montenegro</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>No</td>
<td>There is no differentiation between final consumers and distributors but between kinds of points of delivery (PoD). There are two different rates for access to the transmission network: one called “final” PoD (where end consumption is connected) and other called “network” PoD (which are PoD of DSOs having more than two PoDs, and these PoDs are nodes of meshed distribution network 110 kV). In final PoD contractual capacity is reserved by and extra charges applied in case of exceeding, in network PoD contractual capacity is determined based on actual energy flows, no extra charges in case of exceeding. The total charge (without stranded costs) for users connected in “final PoDs” amounts to 71% of the charge paid by DSO in “network PoDs”.</td>
</tr>
<tr>
<td>Portugal</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>Yes</td>
<td>DSOs do not pay access tariffs. Instead, access tariffs paid by users include network costs not only at their voltage level but also costs of networks at higher voltages, including transmission networks.</td>
</tr>
<tr>
<td>Sweden</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 10: Reactive Energy

In some countries, charges for reactive energy are applied.

The tariff rates may be applied to every MVARh of measured reactive energy or only under pre-defined conditions.

Two charging schemes for reactive energy exist:

- **Reactive Tariff**: A regular tariff rate is applied to each MVARh of reactive energy produced and/or consumed.
- **Penalty**: Reactive energy produced and/or consumed is charged only if some pre-defined conditions are met. Examples can be excesses of energy off-taken/fed-in during a given period or excess levels of cos φ or tg φ.

The table below summarizes main features of charging mechanisms applied by TSO's for reactive energy for users connected to transmission network.

Table A.10. Reactive Energy

<table>
<thead>
<tr>
<th>Country</th>
<th>Reactive Tariff Y/N</th>
<th>Penalty Y/N</th>
<th>Quantity/Conditions of application</th>
</tr>
</thead>
</table>
| Austria | No | No | In case the offtaken active energy does not exceed, on a quarterly basis, 10% of the yearly peak in a given offtake point, the offtake of additional reactive energy is defined in respect of 32.9% of the 10% of the yearly peak in this offtake point.
The tariff for the offtake of additional reactive energy is function of the exceeding level. Zone 1 starts for the quarter-hourly deliveries of reactive energy exceeding tg φ =0.329 for each offtake point. Zone 2 starts for the quarter-hourly deliveries of reactive energy exceeding tg φ =0.767 for each offtake point.
In case the capacitive reactive power of the customer being in offtake regime doesn’t exceed the following limit values, penalty for supplementary deliveries of reactive energy equals 0€/MVARh.
Voltage level (kV) // Limit values capacitive reactive power (MVar):
400-380 // 9
220-150 // 9
132-50 // 2,5 |
| Belgium | No | Yes | |
| Bosnia and Herzegovina | No | No | The same mechanism as in 2015. Different rules for injected and consumed reactive power are imposed to consumers and DSOs. The consumed reactive power for which the penalty is imposed to consumer is calculated on the basis of a formula: Erp=Ercalculated-0.49xEaconsumed where: Erp is the quantity of reactive power for which penalty is imposed, |
| Bulgaria | No | Yes | |
Erconsumed is the consumed reactive power for an 15 min interval, 0.49 is a coefficient, adequate to a power factor of 0.9, Eaconsumed is a quantity of a active power consumed for an 15 min interval. The formula for DSOs is the same, but Erconsumed and Eaconsumed is replaced by Ertransmitted and Eatransmitted (transmitted energy from transmission to distribution network). The penalty for consumed (transmitted) reactive power is 10% of the wholesale price of active power. The penalty for injected reactive power is 100% from the wholesale price of the active power.

<table>
<thead>
<tr>
<th>Country</th>
<th>Active Power</th>
<th>Reactive Power</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croatia</td>
<td>No</td>
<td>Yes</td>
<td>There is no tariff for reactive energy but only for excess reactive energy. It is paid monthly according to metered consumption. Tariff for excess reactive energy is 0.0212 EUR/kvarh. It is paid by L directly connected to the 110 kV transmission network. Excess reactive energy is calculated as positive difference between the actually measured reactive energy and reactive energy that corresponds to an average power factor lower than 0.95 which equals approximately 33% of reactive energy. It is charged to customers on monthly basis.</td>
</tr>
<tr>
<td>Cyprus</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>Yes</td>
<td>No</td>
<td>1.67€/Mvarh.</td>
</tr>
<tr>
<td>Finland</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>No</td>
<td>Yes</td>
<td>If reactive energy/active energy (tg φ) >0.4 for each connection point from 01/11 to 31/03 (from Mondays to Saturdays from 6h to 22h): * 1.36 c€/kVARh is invoiced for 500-350 kV customers. * 1.45 c€/kVARh is invoiced for 350-130 kV customers. * 1.63 c€/kVARh is invoiced for 130-50 kV customers (these values apply from 01/08/2016 to 31/07/2017). Customers having tariffs with time differentiation (i.e. connection voltage lower than 350 kV) have to pay only if their tg φ is higher than 0.4 during peak and winter mid-peak hours.</td>
</tr>
<tr>
<td>Germany</td>
<td>Yes</td>
<td>Yes</td>
<td>Charging schemes for reactive energy are not equally applied due to different contractual arrangements between TSOs and customers. In particular circumstances customers are charged for reactive power usage (charge up to 9.20 €/MVARh). Power Plants are reimbursed for the provision of reactive power.</td>
</tr>
<tr>
<td>Great Britain</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Leading</td>
<td>Reactive</td>
<td>Summary</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Hungary</td>
<td>No</td>
<td>No</td>
<td>Landsnet's tariff scheme assumes a minimum average power factor of $\cos \phi = 0.9$ at the out-feed for distribution system operators and for power intensive users, at each point of delivery. In the event that the average power factor of a single month falls below the limits above, the energy charge and capacity charge shall increase by 2% for each 1% that the power factor falls below the limit.</td>
</tr>
<tr>
<td>Iceland</td>
<td>No</td>
<td>Yes</td>
<td>Leading Lagging Charges included in Generator Performance Incentives. Reactive Power Leading 0.30 €/ MWh.</td>
</tr>
<tr>
<td>Ireland</td>
<td>Yes</td>
<td>Yes</td>
<td>A charge in €c/Kvarh is applied for reactive energy (inductive) withdrawn from the transmission/distribution grids where $\cos \phi$ exceeds a set threshold. $\cos \phi$ is calculated for each connection point unless there is a HV distribution connection between points; in such a case $\cos \phi$ is calculated on the aggregation of connection points. In both cases a charge is applied as a function of: - the ratio of reactive to active energy, - the type of withdrawal point (final customer HV/EHV, network interconnection HV/EHV, network interconnection MV, network interconnection LV), - the relevant time slot (F1, F2 or F3) and it is between 0 and 1.1 eurocent per kVArh for final customers HV/EHV and network interconnections HV/EHV. Then DSOs pay Terna for reactive energy withdrawn from the transmission grid and Terna pays DSOs for reactive energy withdrawn from the distribution grid. The difference paid/received by Terna increases/decreases the amount of the ancillary services. There is also a charge paid to DSOs by final consumers with an available capacity higher than 16.5 kW for reactive energy withdrawn from the distribution above a set $\cos \phi$ threshold.</td>
</tr>
<tr>
<td>Italy</td>
<td>No</td>
<td>Yes</td>
<td>Reactive power tariffication between TSO and DSO not applied in Latvia. Reactive power tariff exist only for consumers, in cases where phase factor $\tan \phi$ is above 0.4: reactive power tariff for consuming is 0.004 EUR/kVArh (if $\tan \phi \geq 0.4$). Tariff for reactive power generation to the transmission network is 0.013 EUR/kVArh.</td>
</tr>
<tr>
<td>Latvia</td>
<td>Yes</td>
<td>No</td>
<td>Applied to all consumers for each connection point: 0.71 €/MVarh for consumption and 1.42 €/MVarh for generation of reactive energy.</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Yes</td>
<td>No</td>
<td>Charged if reactive energy exceeds 50% of the consumed energy / L / 11.16€/MVArh if $\cos \phi < 0.9$ inductive.</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>No</td>
<td>Yes</td>
<td>Allowed $\cos \phi = 0.95$.</td>
</tr>
<tr>
<td>Country</td>
<td>Charge for Reactive Energy</td>
<td>Reaction Power Included in Generator Performance Incentives</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excessive take-on of reactive power will be collected from direct users, at different prices depending on the technological procedure that the user is conducted, and it is 20% of the cost of active energy. Tariff for reactive energy is charged to 8.168 Eur/Mvarh.</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>Yes</td>
<td>Leading Lagging Charges included in Generator Performance Incentives. Reactive Power Leading 0.25 €/MWh. Reactive Power Lagging 0.25 €/MWh. See Other System Charges in Statement of Charges.</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reactive power that is detrimental to the system will be invoiced to the customer.</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
| | | PSE S.A. apply penalties for excess reactive power by final consumers connected to transmission network in nodes where end consumption is connected and DSOs having only one connection point. The penalty is calculated for each MVahr of passive energy taken-off the HV and EHV network when phase factor $tg\phi$ is above 0.4 and for each MVahr of passive energy fed into the transmission network regardless the value of phase factor. The charge for excess take-off passive energy (above $tg\phi = 0.4$) is calculated according to the following formula:
$$O_b = k \times C_{\text{rk}} \times \left[\frac{1 + tg^2\phi}{1 + tg^2\phi_0} - 1 \right] \times A$$
where:
k – coefficient equal 0.5,
C_{rk} – unit price of active energy,
$tg\phi$ – measured value of phase factor in period used for settlement of the charges for excess take-off of passive energy,
$tg\phi_0$ – value of phase factor $= 0.4$ determined in a Agreement between PSE S.A. and customer,
A – amount of active energy taken-off the transmission network by customer in a settlement period. The charge for passive energy fed into transmission network (capacity reactive energy) is calculated as a product of the amount of passive energy, the price of active energy C_{rk} and coefficient $k=0.5$. |
| Portugal | Yes | Yes |
| | | Penalty: The Inductive reactive energy supplied by the transmission network outside the off-peak hours, is charged as follows:
8.415 €/MVAhr, if $0.3 <= tg\phi < 0.4$
25.5 €/MVAhr, if $0.4 <= tg\phi < 0.5$
76.5 €/MVAhr, if $tg\phi >= 0.5$
Tariff: The reactive energy received by the
<table>
<thead>
<tr>
<th>Country</th>
<th>Use</th>
<th>Yes/No</th>
<th>Rate (€/MVArh)</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romania</td>
<td>Yes</td>
<td>Yes</td>
<td>11.01 Eur/MWh</td>
<td>Rate calculated as 30% of the estimated price of electricity purchased by the TSO to offset network losses. Charged to both G and L. Both capacitive and inductive. If cosφ < 0.65 the penalty applied is three times the reactive tariff for: - Recorded capacitive energy - Inductive energy with the difference between the consumed reactive energy and the related reactive energy for cosφ=0.92. No differentiations (user, voltage levels, time, system).</td>
</tr>
<tr>
<td>Serbia</td>
<td>Yes</td>
<td>Yes</td>
<td>1.133 EUR/MVArh</td>
<td>All users on transmission grid except generators, PSPP and auxiliary power for power plants are charged for reactive energy. If consumed reactive energy exceeds level of cosφ=0.95 the charge for the exceeding reactive energy is double. The base reactive energy tariff is 1.133EUR/MVArh. The reactive energy tariff for cosφ<0.95 is 2.266EUR/MVArh. These tariffs are applied both to capacitive and inductive reactive energy.</td>
</tr>
<tr>
<td>Slovakia</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>No</td>
<td>Yes</td>
<td>2.93 €/Mvarh</td>
<td>1: The charges are applied to L and DSO. In case of cosφ<0.95 inductive and capacitive. 2: There is no differentiation about voltage levels, time/period (15min) and location. 3: The charges are applied for all connection points of given user. 5: The rate applied is 2.93 €/Mvarh.</td>
</tr>
<tr>
<td>Spain</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>A charge in €/MVArh is applied to the reactive energy consumption exceeding 33% of the active energy consumption. Applicable to consumers connected above 1 kV. With few exceptions, this charge is the following for all tariff periods: (i) for 0.80≤cosφ<0.95, 0.041554 €/kVArh; (ii) for cosφ<0.80, 0.062332 €/kVArh. (Orden IET/3586/2011).</td>
</tr>
<tr>
<td>Sweden</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>Yes</td>
<td>Yes</td>
<td>12.15 €/Mvarh to be paid for individual use of reactive energy; 2.76 €/Mvarh premium for delivery of reactive energy.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 11: Netting of flows for the application of transmission tariffs

When there is a situation of connected generation and load at the same connection point to the grid, those cases can be treated differently in transmission tariff settlement.

One example of such case is connection of thermo generation units, where there are both directions of energy flows possible – injection of energy to the grid during regular generator operation, and extraction of energy from the grid when generator is down or during preparatory regime for the operation.

Second possible example is the situation when grid user is having generation and another separate load connected to the same substation bus bars, acting as connection point. In this case energy can flow from user’s generation to user’s separate load via substation bus bars, without actually entering the grid.

The overview of particular national treatment of such situation is presented in the following table:

<table>
<thead>
<tr>
<th>Country</th>
<th>Only G is considered in the settlement</th>
<th>Only L is considered in the settlement</th>
<th>G and L are treated separately in the settlement</th>
<th>Netting between G and L is performed in the settlement, and tariff for predominant value is applied</th>
<th>Time frame used for netting (in min.)</th>
<th>Such cases are not existing or not allowed in the grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td>X</td>
<td>15 Min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
<td>X</td>
<td>60 Min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td>X</td>
<td>10 Min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Country</td>
<td>X</td>
<td></td>
<td>60 Min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td></td>
<td>X</td>
<td>60 Min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FYROM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Ireland</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>X</td>
<td></td>
<td>60 Min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>X</td>
<td></td>
<td>60 Min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Country remarks regarding Belgium, Finland, Italy, Luxembourg, Netherlands, Poland, Romania and Switzerland are to be found in Appendix 1.
Appendix 12: Exchange rates

For countries for which currency is not €, the tariff figures in this report were converted into € by using the exchange rate dated 31 December 2016.

The table below summarizes exchange rates applied.

<table>
<thead>
<tr>
<th>Country</th>
<th>Exchange rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosnia and Herzegovina</td>
<td>1BAM= 0.511292€</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1BGN=0.510000€</td>
</tr>
<tr>
<td>Croatia</td>
<td>1HRK=0.132314€</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1CZK=0.037009€</td>
</tr>
<tr>
<td>Denmark</td>
<td>1DKK=0.134510€</td>
</tr>
<tr>
<td>Great Britain</td>
<td>1GBP=1.178600€</td>
</tr>
<tr>
<td>Hungary</td>
<td>1HUF=0.003215€</td>
</tr>
<tr>
<td>Iceland</td>
<td>1ISK=0.008394€</td>
</tr>
<tr>
<td>FYROM</td>
<td>1MKD=0.016265€</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>1GBP=1.178600€</td>
</tr>
<tr>
<td>Norway</td>
<td>1NOK=0.110000€</td>
</tr>
<tr>
<td>Poland</td>
<td>1PLN=0.226040€</td>
</tr>
<tr>
<td>Romania</td>
<td>1RON=0.220210€</td>
</tr>
<tr>
<td>Serbia</td>
<td>1RSD=0.008100€</td>
</tr>
<tr>
<td>Sweden</td>
<td>1SEK=0.104411€</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1CHF=0.930800€</td>
</tr>
</tbody>
</table>
Glossary of terms

Active and Reactive Power

The instantaneous power can be decomposed into two time-varying functions: (i) the real or active power (P), which is measured in watts (W) and is always positive (or zero); and (ii) the reactive power (Q), which is measured in voltamperes reactive (vars) and has an average value of zero. The real or active power P represents the useful power being transmitted. The reactive power Q is capable of no useful work, but is required to control system voltages within adequate ranges for the reliability of the power system.

Black-Start

Black start is the procedure of reestablishing the electricity supply within a control area after a total disruption of the supply.

Cross-border congestion

Situation in which an interconnection linking national transmission networks cannot accommodate all physical flows resulting from international trade requested by market participants, because of a lack of available capacity of the interconnectors and/or the national transmission systems concerned.

Depreciation

TSO Investment costs (sometimes referred to as Capital Expenditures or CAPEX) are not charged to the users at the same time they are incurred. Instead, TSO investment costs are distributed over a regulated useful lifetime of the asset. Depreciation is the annual result of that distribution. Depreciation is charged to users through tariffs, thus allowing the TSO to recover its investment and renew the assets once they are completely depreciated.

Energy-related component

Components of charges allocated to energy (expressed in MWh) consumed, off-taken or injected (consumption and off-taken energy can be different in the case where generation is connected on the same transmission access point)

First Connection charges

Charges borne by new grid users (producer or consumer) aiming to connect to the transmission grid, consisting of TSO's costs for the build of the transmission facility to enable the connection.

G component

Transmission tariff component applied to energy injected into the grid (generation).

Internal congestion

Situation in which an internal national transmission network cannot accommodate all physical flows resulting from internal trade requested by market participants, because of a lack of capacity of the internal transmission system concerned.

ITC

The Inter TSO Compensation Agreement is a multiparty agreement concluded between ENTSO-E, ENTSO-E member countries and Albania. It is designed to compensate parties for costs associated with losses resulting with hosting transits flows on networks and for the costs of hosting those flows.

L component

Transmission tariff component applied to energy off-taken from the grid (load).
Locational signals
Tariff signals designed to promote the efficient location of generation and consumption.

Losses
The energy losses that occur in the transmission system as a result of the system operating conditions (MW and MVAr flows, Voltage levels, system topology, etc.).

OPEX
Operating Expenses needed to operate TSO assets (maintenance costs, staff costs, etc).

Other Regulatory Charges
Charges resulting from provisions imposed by national laws or regulations that are recovered or invoiced by TSOs, but are not directly related to TSO activities. Examples of costs recovered through these types of charges might include: stranded costs, costs of supporting renewable or cogeneration energy production, regulatory levies, Public Service Obligation costs, etc.

Power-related components
Components of charges allocated to contracted power and/or peak power (expressed in MW) which consumed, off-taken or injected.

Primary Reserve
Power which is reserved to respond to frequency changes and which have a very fast response time.

Public Service Obligation
Public Service Obligations (PSOs) are compulsory services that regulators or governments may apply to companies in the public interest.

The transmission system operator and grid owners may be subject to a number of PSOs, such as supply security; payment of subsidies for environmentally-friendly electricity; and research and development of environmentally-friendly production technology, etc.

Return on capital
It is the regulated revenue that allows the TSO to be remunerated for investments. It is charged to users through tariffs.

Stranded costs
Costs incurred in the past by a stakeholder that, after the introduction of some policy change, are considered as not recoverable. In some jurisdictions, the regulator may allow stranded costs to be charged through transmission tariffs.

Seasonal/Time-of-day differentiation
Variation of tariff rates depending on the time of use. Tariffs may vary according to seasons, daily demand profiles, holiday periods, and peak usage times for example.

Secondary reserves
Power which is reserved to respond to frequency changes and which have a higher time of response than primary reserves.
System balancing
System service which involves activating secondary and tertiary reserves for correcting in real time energy deviations from the values specified in contractual schedules of market participants.

System Services or Ancillary Services
Ancillary service means a service necessary for the reliable operation of a transmission or distribution system. Depending on the jurisdiction, the ancillary services may include spinning reserves, frequency reserves, voltage control, black start, etc.

Tertiary reserve
Power available from generators which is reserved to respond to frequency changes which are manually activated.

Unit Transmission Tariff
It is the transmission tariff that is built specifically for the analysis carried out in this Overview. For each country, the Unit Transmission Tariff (UTT) is computed under the hypothesis of a pre-defined "base case" which is described in Section 3.

Transmission Voltage levels
Voltage levels of transmission networks vary across ENTSO-E members, especially the lowest voltage level classified as “transmission”. However, in all Member States the voltage levels of 220 kV and above are included as transmission network.

Voltage Control
Voltage Control means the control actions designed to maintain the set voltage level or the set value of Reactive Power.