

European Network of Transmission System Operators for Electricity

COORDINATED SECURITY ANALYSIS DATA EXCHANGE SPECIFICATION

2022-02-16

SOC APPROVED VERSION 2.0

Copyright notice:

2 Copyright © ENTSO-E. All Rights Reserved.

- 3 This document and its whole translations may be copied and furnished to others, and derivative
- 4 works that comment on or otherwise explain it or assist in its implementation may be prepared,
- 5 copied, published and distributed, in whole or in part, without restriction of any kind, provided
- 6 that the above copyright notice and this paragraph are included on all such copies and
- 7 derivative works. However, this document itself may not be modified in any way, except for
- 8 literal and whole translation into languages other than English and under all circumstances, the
- 9 copyright notice or references to ENTSO-E may not be removed.
- 10 This document and the information contained herein is provided on an "as is" basis.
- 11 ENTSO-E DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
- 12 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
- 13 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
- 14 FITNESS FOR A PARTICULAR PURPOSE.
- 15 This document is maintained by the ENTSO-E CIM EG. Comments or remarks are to be
- 16 provided at cim@entsoe.eu

17 NOTE CONCERNING WORDING USED IN THIS DOCUMENT

- 18 The force of the following words is modified by the requirement level of the document in which
- 19 they are used.

1

- SHALL: This word, or the terms "REQUIRED" or "MUST", means that the definition is an absolute requirement of the specification.
- SHALL NOT: This phrase, or the phrase "MUST NOT", means that the definition is an absolute prohibition of the specification.
- SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.
- SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behaviour is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behaviour described with this label.
- MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional.

Revision History

Version	Release	Date	Paragraph	Comments
1	0	2021-04-21		Approved by SOC.
2	0	2022-02-16		The specification was enriched with the following extensions and related profiles:
				 Equipment Reliability (Including energy areas and roles related to network codes, Direct Current related to DC Poles for Corridors). The content of this profile will be integrated in the EQ profile of CGMES.
				Steady State Instruction
				 System Integrity Protection Schemes (SIPS) as part of the Remedial Action profile
				 Power Transfer Corridors (PTC) as part of Equipment Reliability profile.
				Availability plan
				 Generation and Load Shift Keys (Time phase, contingency induced balance, variation of losses)
				 Security limits as part of Equipment Reliability
				Approved by SOC.

34				CONTENTS	
35	Со	pyright i	notice:		2
36	Re	vision H	istory		3
37	CC	NTENT	S		4
38	1	Scope			6
39	2	Refere	ences		6
40		2.1	Legal refer	ences	6
41		2.2	•	references	
42		2.3	Specification	on documents references	7
43		2.4	Other refer	ences	7
44	3	Terms	and definition	าร	8
45	4	Abbre	viated terms		12
46	5	Coord	inated security	y analysis business process	13
47		5.1	Overview		13
48		5.2	Use cases.		15
49		5.3	Sequence	diagram	18
50		5.4	State diagr	ams	
51			5.4.1	Remedial action state diagram	
52				Contingency category diagram	
53				Network element category diagram	
54		5.5	-	rams	
55 50	•	م : ا		System Integrity Protection Schemes (SIPS) overview	
56	6		•	pecification	
57		6.1 6.2		itu with ather data analysis at and and	
58 59		6.3		ity with other data exchange standardss naming convention	
60		6.4		ange specification constraints	
61		6.5		inge specification constraints	
62		0.0		Constraints	
63			6.5.2	Reference metadata	
64					
65	lis	t of fig	ıres		
		_			4
66	_		-	regional and cross-regional day-ahead process	
67				ess, steps and timings	
86					
69	Fig	jure 4 –	CSA inputs S	Sequence diagram	18
70	Fig	jure 5 -	CSA general s	sequence diagram	19
71	Fig	ure 6 -	Remedial action	on state diagram	21
72	Fig	jure 7 -	Contingency c	ategory diagram	23
73	Fig	ure 8 –	Network elem	ent category diagram	23
74	Fig	jure 9 - :	SIPS overview	/	25

75	Figure 10. Document header dependencies minimum requirement	30
76		
77	List of tables	
78	Table 1 - Role labels and descriptions	16
79	Table 2 - CSA use cases	16
80		

1 Scope

81

97

98

100

114

118

120

121

122

123

- 82 The Coordinated Security Analysis (CSA) data exchange specification describes the data
- 83 exchanges for the CSA process. The CSA is a critical business process based on CSAm (as
- per SOGL article 75) to ensure the security of supply within the European electricity grid. The
- 85 CSA data exchange specification also includes the regional operational security coordination
- 86 per CCR (as per SOGL Article 76) as well as the Inter-RSC and inter-CCR Coordination
- 87 (required by the SOGL article 75 and 76).
- 88 The CSA process is relying on input data from TSOs that are shared to the RSCs to perform
- remedial action optimisation for a CCR and in cooperation with the other CCRs. A common data
- 90 specification shall ensure that each of the functions handling and storing any of the assessed
- 91 data, will do it in an equally secure and adequate manner.
- 92 The CSA data exchange specification aims at defining a common data format to lower the IT
- 93 implementation cost and enable interoperability for the TSOs and RSCs. It aims at making it
- 94 possible for software vendors to develop an IT application for TSOs and RSCs that allow them
- 95 to exchange information for the CSA process.
- 96 This document defines a structured way of exchanging the following data:
 - Available remedial action
 - Assessed element
- 99 Contingency
 - SIPS configuration
- 101 Security limits
- Generation and Load Shift Key (GLSK)
- Power Transfer Corridor (PTC)
- Steady State Instructions Remedial action schedule (to exchange proposed, accepted/rejected, activated remedial action)
- Security analysis result
- 107 Impact Assessment Matrix
- For the next release of the specification, the CSA data exchange project group will continue enriching it with the following items:
- CSA methodology amendment
- Regional operational security coordination methodologies per CCR and input from respective RSC implementation projects
- 113 The following is out of scope of this specification:
 - The reporting and the monitoring of the CSA (pursuant to SOGL article 17)
- The Probabilistic Risk Assessment (pursuant to Article 44(4) of CSAm)
- The redispatching and countertrading cost sharing (in accordance with CACM Article 74(7))

2 References

119 2.1 Legal references

- Commission Regulation (EU) 2017/1485 of 2 August 2017 establishing a guideline on electricity transmission system operation (SOGL);
- Commission Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on capacity allocation and congestion management (CACM);
- All TSOs' proposal for a methodology for coordinating operational security analysis in accordance with Article 75 of Commission Regulation (EU) 2017/1485 of 2 August 2017
 establishing a guideline on electricity transmission system operation (CSA methodology);

Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019
 on the internal market for electricity)

2.2 Normative references

130

131

132 133

134

135

136

137

138 139 140

141 142

143

144

145 146

147

148

149

150

151

152153

154 155

156

157

158

159

160 161

163 164

165

166

167168

169

170171

172

173174

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- <u>IEC 61970-301:2021 Energy management system application program interface (EMS-API)</u> Part 301: Common information model (CIM) base;
- IEC 61970-600-1:2021 Energy management system application program interface (EMS-API) Part 600-1: Common Grid Model Exchange Standard (CGMES) Structure and rules;
- IEC 61970-600-2:2021 Energy management system application program interface (EMS-API) Part 600-2: Common Grid Model Exchange Standard (CGMES) Exchange profiles specification;
- IEC TS 61970-600-1:2017 Energy management system application program interface (EMS-API) Part 600-1: Common Grid Model Exchange Specification (CGMES) Structure and rules;
- IEC TS 61970-600-2:2017 Energy management system application program interface (EMS-API) Part 600-2: Common Grid Model Exchange Specification (CGMES) Exchange profiles specification;
- IEC 61968-11:2013 Application integration at electric utilities System interfaces for distribution management - Part 11: Common information model (CIM) extensions for distribution

2.3 Specification documents references

The following specification documents, in whole or in part, are referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- ENTSO-E Assessed element profile specification;
- ENTSO-E Availability plan profile specification;
- ENTSO-E Contingency profile specification;
- ENTSO-E Equipment reliability specification;
- ENTSO-E Generation and Load Shift Key profile specification;
 - ENTSO-E Impact assessment matrix profile specification;
 - ENTSO-E Remedial action profile specification;
 - ENTSO-E Remedial action schedule profile specification;
 - ENTSO-E Security analysis result profile specification;
 - ENTSO-E Steady State Instructions profile specification;
 - ENTSO-E Metadata and Header profile specification;

2.4 Other references

- The Harmonised Electricity Market Role Model;
- Report on Inter-RSC and Inter-CCR Coordination for Coordinated Regional Security Analyses V1.2
 - CSA Coordination Function Business Requirements Specification v1.0
- CSA Input Data Consistency Function Business Requirements Specification v1.0
- CSA Data Classification v1.0
- CGM-RSC Users Group Business Requirements Specification v1.0
- CGMES profiling user guide v1.0.

179 3 Terms and definitions

180 3.1 Agreed remedial action

- 181 Agreed remedial action means a cross-border relevant remedial action for which TSOs in a
- 182 region agreed to implement or any other remedial action for which TSOs have agreed that it
- does not need to be coordinated.
- 184 [SOURCE: CSAm art. 2.1.19]

185 3.2 Assessed element

- 186 Assessed element is a network element for which the electrical state is evaluated in the regional
- or cross-regional process and which value is expected to fulfil regional rules function of the
- 188 operational security limits.
- 189 Where necessary, for defining the regional or cross-regional rules for ensuring the system
- 190 security, assessed elements can be subdivided into two sub-classes secured elements and
- 191 scanned elements.
- 192 [SOURCE: 2019 Inter-RSC report, BRS CAS consistency function, 4.1]

193 3.3 Availability plan

- 194 A given availability schedule with a given status and cause that include multiple equipment that
- 195 need to follow the same scheduling periods
- 196 [SOURCE: CSA project group]

197 3.4 Available remedial action

- 198 Available remedial action is a remedial action which is available to solve identified constraints.
- 199 It includes the needed technical and cost information.
- 200 [SOURCE: 2019 Inter-RSC report]
- 201 All available cross border relevant remedial actions (XRAs) according to CSAm and can include more.

202 3.5 Capacity Calculation Region

- 203 Capacity Calculation Region (CCR) means the geographic area in which coordinated capacity
- 204 calculation is applied.
- 205 [SOURCE: CACM art.2.3]

206 3.6 Common Grid Model (CGM)

- 207 Common Grid Model (CGM) means a Union-wide data set agreed between various TSOs
- 208 describing the main characteristic of the power system (generation, loads and grid topology)
- 209 and rules for changing these characteristics during the coordinated capacity calculation
- 210 process.
- 211 [SOURCE: CACM art.2.2]

212 **3.7 Constraint**

- 213 Constraint means a situation in which there is a need to prepare and activate a remedial action
- in order to respect operational security limits.
- 215 [SOURCE: SOGL art.3.2.2]

216 3.8 Contingency

- 217 Contingency means the identified and possible or already occurred fault of an element,
- 218 including not only the transmission system elements, but also significant grid users and
- 219 distribution network elements if relevant for the transmission system operational security.
- 220 [SOURCE: CACM art.2.10]

221 3.9 Contingency analysis

- 222 Contingency analysis means a computer-based simulation of contingencies from the
- 223 contingency list.
- 224 [SOURCE: SOGL art.3.2.27]
- 225 3.10 Contingency list
- 226 Contingency list means the list of contingencies to be simulated in order to test the compliance
- with the operational security limits.
- 228 [SOURCE: SOGL art.3.2.4]
- 229 3.11 Countertrading
- 230 Countertrading means a cross zonal exchange initiated by system operators between two
- 231 bidding zones to relieve physical congestion.
- 232 [SOURCE: Reg 2019/943 art.2.27]
- 233 3.12 Critical Network Element
- 234 Critical network element means a network element either within a bidding zone or between
- 235 bidding zones taken into account in the capacity calculation process, limiting the amount of
- 236 power that can be exchanged.
- 237 [SOURCE: Reg 2019/943 art.2.69]
- 238 3.13 Cross-border relevant network element' (XNE)
- 239 Cross-border relevant network element' (XNE) means a network element identified as cross
- 240 border relevant and on which operational security violations need to be managed in a
- 241 coordinated way.
- 242 [SOURCE: ACER Decision on CSAM: Annex I art 2.1.8]
- 243 3.14 Cross-border relevant remedial action (XRA)
- 244 Cross-border relevant remedial action (XRA) means a remedial action identified as cross border
- relevant and needs to be applied in a coordinated way.
- 246 [SOURCE: CSAm art.2.1.12]
- 247 3.15 Curative remedial action
- 248 Curative remedial action means a remedial action that is the result of an operational planning
- 249 process and is activated straight subsequent to the occurrence of the respective contingency
- 250 for compliance with the (N-1) criterion, taking into account transitory admissible overloads and
- their accepted duration.
- 252 [SOURCE: CSAm art.2.1.24]
- 253 3.16 Exceptional contingency
- 254 Exceptional contingency means the simultaneous occurrence of multiple contingencies with a
- 255 common cause.
- 256 [SOURCE: SOGL art.3.2.39]
- 257 3.17 External contingency
- 258 External contingency means a contingency outside the TSO's control area and excluding
- interconnectors, with an influence factor higher than the contingency influence threshold.
- 260 [SOURCE: SOGL art.3.2.24]

261 3.18 Generation Shift Key

- A method of translating a net position change of a given bidding zone into estimated specific
- 263 injection increases or decreases in the common grid model
- 264 [SOURCE: CACM art.2.12]

265 3.19 Identified constraint

- 266 Identified constraint is a couple of elements composed by one or more assessed elements and
- 267 the contingency leading to a violation of an operational security limit or a function of this
- 268 operational security limit.

269 3.20 Impact assessment

- 270 Impact assessment determines the impact of changes of a grid model on each TSO's grid and
- 271 assesses whether this impact qualifies as so significant that the respective TSO is deemed
- 272 "impacted" by the change.

273 3.21 Individual Grid Model (IGM)

- 274 Individual Grid Model (IGM) means a data set describing power system characteristics
- 275 (generation, load and grid topology) and related rules to change these characteristics during
- the coordinated security analysis process, prepared by the responsible TSOs, to be merged
- with other individual grid model components in order to create the common grid model.
- 278 [SOURCE: CACM art.2.1]

279 3.22 Individual action

- 280 Individual action is an action that is one of the single remedial actions as defined in Article 22
- 281 of the SO Regulation.
- 282 [SOURCE: CSAm art.14.2]

283 3.23 Internal contingency

- 284 Internal contingency means a contingency within the TSO's control area, including
- 285 interconnectors.
- 286 [SOURCE: SOGL art.3.2.23]

287 **3.24 Load Shift Key**

- 288 It constitutes a list specifying those load that shall contribute to the shift in order to take into
- account the contribution of generators connected to lower voltage levels (implicitly contained in
- the load figures of the nodes connected to the EHV grid).[SOURCE: Coordinated Capacity
- 291 Calculation IG v1.0]

292 **3.25 N-situation**

- 293 N-situation means the situation where no transmission system element is unavailable due to
- 294 occurrence of a contingency.
- 295 [SOURCE: SOGL art.3.2.3]

296 **3.26 N-1 situation**

- 297 N-1 situation means the situation in the transmission system in which one contingency from the
- 298 contingency list occurred.
- 299 [SOURCE: SOGL art.3.2.15]

300 3.27 Normal state

- 301 Normal state means a situation in which the system is within operational security limits in the
- 302 N-situation and after the occurrence of any contingency from the contingency list, taking into
- 303 account the effect of the available remedial actions.

- 304 [SOURCE: SOGL art.3.2.5]
- 305 3.28 Ordinary contingency
- 306 Ordinary contingency means the occurrence of a contingency of a single branch or injection.
- 307 [SOURCE: SOGL art.3.2.54]
- 308 3.29 Operational security analysis
- 309 Operational security analysis means the entire scope of the computer based, manual and
- 310 automatic activities performed in order to assess the operational security of the transmission
- 311 system and to evaluate the remedial actions needed to maintain operational security.
- 312 [SOURCE: SOGL art.3.2.50]
- 313 3.30 Out of range contingency
- Out of range contingency means the simultaneous occurrence of multiple contingencies without
- a common cause, or a loss of power generating modules with a total loss of generation capacity
- 316 exceeding the reference incident.
- 317 [SOURCE: SOGL art.3.2.55]
- 318 3.31 Overlapping zone
- 319 A collection of all the overlapping cross border assessed elements which have the same sets
- 320 of impacted and impacting regions.
- 321 [SOURCE: CSA data exchange project group]
- 322 3.32 Power transfer corridor (PTC)
- 323 A power transfer corridor is defined as a set of circuits (transmission lines or transformers)
- 324 separating two portions of the power system, or a subset of circuits exposed to a substantial
- portion of the transmission exchange between two parts of the system.
- 326 [SOURCE: CSA data exchange project group]
- 327 3.33 Preventive remedial action
- 328 Preventive remedial action means a remedial action that is the result of an operational planning
- 329 process and needs to be activated prior to the investigated timeframe for compliance with the
- 330 (N-1) criterion.
- 331 [SOURCE: CSAm art.2.1.18]
- 332 3.34 Proposed remedial action
- 333 Proposed remedial action is a remedial action proposed by RSC after remedial action
- optimization. RSC coordinates proposed remedial actions with affected TSOs for intra-CCR and
- with affected TSOs and RSC for cross-CCR.
- 336 3.35 Remedial action
- 337 Remedial action means any measure applied by a TSO or several TSOs, manually or
- automatically, in order to maintain operational security.
- 339 [SOURCE: CACM art.2.13]
- 340 3.36 Remedial action configuration
- 341 Remedial action configuration means a configuration containing the grid state alteration and
- the availability that is sent by the TSO and from which remedial actions can be derived.
- 343 3.37 Remedial action influence factor
- 344 Remedial action influence factor means a flow deviation on a XNEC resulting from the
- 345 application of a remedial action, normalised by the permanent admissible loading on the
- 346 associated XNE.

347	[SOURCE:	CSAm	art.2.1.11]

348 3.38 Regional Security Coordinator (RSC)

- Regional Security Coordinator (RSC) means the entity or entities, owned or controlled by TSOs,
- 350 in one or more capacity calculation regions performing tasks related to TSO regional
- 351 coordination.
- 352 [SOURCE: SOGL art.3.2.89]

353 3.39 Restoring remedial action

- 354 Restoring remedial action means a remedial action that is activated subsequent to the
- occurrence of an alert state for returning the transmission system into normal state again.
- 356 [SOURCE: CSAm art.2.1.13]

357 3.40 Scanned element

- 358 Scanned element is an assessed element on which the electrical state (at least flows) shall be
- 359 computed and shall be subject to an observation rule during the regional security analysis
- 360 process. Such observation rule can be for example avoiding the increase of a constraint or
- 361 avoiding the creation of a constraint on this element, as a result of the design of remedial
- 362 actions needed to relieve violations on the secured elements. A scanned element within a CCR
- can be any element of any CCR (irrespective of any potential qualification as XNE by one or
- 364 more CCRs).

365 3.41 Secured element

- 366 Secured element is an assessed element on which remedial actions needed to relief these
- violations shall be identified, when violations of an operational security limit are identified during
- the regional or cross-regional security analysis. Each secured element within a CCR is an XNE.

369 3.42 System (integrity) protection scheme

- 370 System integrity protection scheme¹ is an automatic protection system designed to detect
- abnormal or predetermined system conditions and take corrective actions other than and/or in
- addition to the isolation of faulted components to maintain system reliability. Such actions may
- include changes in demand, generation or system configuration to maintain system stability,
- 374 acceptable voltage or power flows.²
- 375 [SOURCE: North American Electric Reliability Corporation glossary]
- 376 Note: SOGL art.37 defines tasks to TSOs which use Special Protection Schemes

377 4 Abbreviated terms

378	CCR	Capacity	Calculation	Region
-----	-----	----------	-------------	--------

- 379 CGMES Common Grid Model Exchange Standard
- 380 CIM Common Information Model (electricity)
- 381 CSA Coordinated Security Analysis
- 382 CSAm Coordinated Security Analysis Methodology
- 383 EIC Energy Identification Codes
- 384 ENTSO-E European Network of Transmission System Operators for Electricity
- 385 HVDC High Voltage Direct Current
- 386 IEC The International Electrotechnical Commission
- 387 MAS Model Authority Set
- 388 mRID CIM Master Resource Identifier

-

¹ The system protection scheme (SPS) can be called system integrity protection schemes (SIPS) in some CCRs (e.g. Nordic CCR)

² North American Electric Reliability Corporation glossary

389	MTU	Market Time Unit
390	OCL	Object Constraint Language
391	OPC	Outage Planning Coordination
392	OWL	Web Ontology Language
393	RAO	Remedial Action Optimization
394	RCC	Regional Coordination Centres
395	RDF	Resource Description Framework
396	RDFS	RDF Schema
397	RefHour	Reference Hour
398	RSC	Regional Security Coordinator
399	SHACL	Shapes Constraint Language
400	SOC	ENTSO-E System Operations Committee
401	SOGL	System Operations Guideline
402	SIPS	System Integrity Protection Scheme
403	STA	Short Term Adequacy
404	TSO	Transmission System Operator
405 406	UCTE DEF	Union for the Coordination of the Transmission of Electricity Data Exchange Format
407	URI	Uniform Resource Identifier
408	UUID	Universally Unique Identifier
409	XML	Extensible Markup Language
410	XNE	Cross-border relevant Network Element
411	XRA	Cross-border relevant Remedial Action
412	XSD	XML Schema Definition
413		

5 Coordinated security analysis business process

415 **5.1 Overview**

- The coordinated security analysis data exchange specification defines the data exchange format for the coordinated security analysis. It covers both Inter-RSC coordination and
- 418 coordinated regional security analysis (for day ahead and intraday, and for different CCR).
- 419 Inter-RSC Coordination is required by SOGL for RSCs when performing their tasks defined in
- 420 SOGL (Art 77 to 81) at CCR level. CSA methodology (CSAm) developed pursuant to SOGL
- 421 Article 75 provides a set of requirements for TSOs and RSCs, aimed at defining what is the
- 422 content and objectives of this inter-RSC coordination. The adopted version of CSAm also
- 423 emphasizes the inter-CCR coordination aspects.
- The regional and cross-regional day-ahead process major steps and timings are defined in the CSAm Article 33. The process is divided in four phases.
- **Preparation until T0:** This corresponds to the preparation of the SOs' IGMs and of all relevant information (updates of available remedial actions, contingencies, ...)
- Coordination Run 1 from T0 to T2: From T0 to T1 (at max) the process until the CGM is available (for 24 hours of next day). From CGM availability (max at T1) to T2:

430 all the phases of regional and cross regional security analyses (contingency analysis, remedial action optimization, coordination) and its possible loops.

- Coordination Run 2 from T2 to T4: From T2 to T3 (at max) the process until an updated CGM is available (for 24 hours of next day); this CGM includes all agreed preventive remedial actions; other information is also updated and shared (agreed curative remedial actions, new forecasts, any other changes to the inputs). From CGM availability (max at T3) to T4: all the phases of regional and cross-regional security analyses (contingency analysis, remedial action optimization, coordination) and its possible loops.
- Final Validation from T4 to T5.

T1 Target T0 T1 T2 T2i Т3 T4 T5 ·(A) First Run Second Run rity Analysis, RAO, Inter-CCR Coordination, Iteration) Analysis, RAO, Inter-CCR ordination, Iteration) 18:00 18:30 20:00 20:20 20:45 21:45 22:00 90 min 45 min 30 min 60 min 15 min

Figure 1 – Main steps on regional and cross-regional day-ahead process

Each coordination run includes the building of a CGM model, a regional security analysis and remedial action optimization with an inter-RSC and inter-CCR coordination.

The second coordination run is performed to evaluate the combined effects of all remedial actions preliminary agreed in the first one and to improve/correct where necessary. This second coordination run may also benefit of more recent forecast updates.

For intraday process, steps and timings are described below

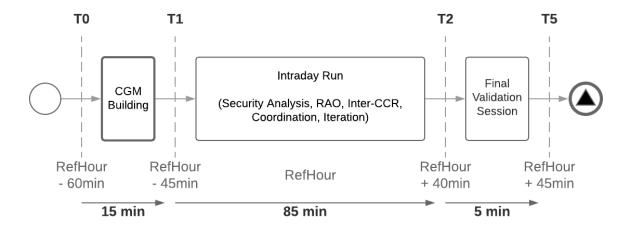


Figure 2 - Intraday process, steps and timings

• Until RefHour - 60min: The IGMs are made available for the following hours, at least from RefHour +1 until RefHour +9 (and preferably until end of the day).

453 454

450 451

452

432

433

434

435

436 437

438

439

440

441442

443 444

445

446

447

448

- From RefHour 60min to RefHour 45min: The CGM is made available.
 - From RefHour 45min To RefHour + 40min: The regional and cross-regional process are executed.
 - From RefHour + 40min To RefHour + 45min: The intraday final validation is executed.

5.2 Use cases

456

457

458

459 460

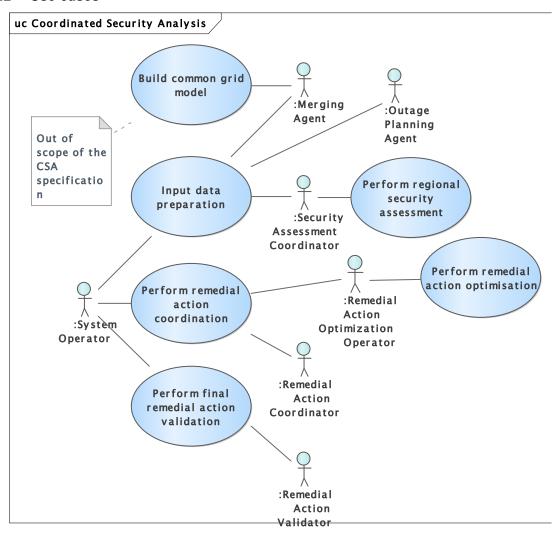


Figure 3 - Use Cases

461

Table 1 gives a list of roles involved in the CSA business process.

Table 1 - Role labels and descriptions

Role Label	Role Description
Merging Agent	The Merging Agent is responsible to gather the IGMs from
	SOs and build the CGM. The Merging Agent provides the
	CGM to the security assessment coordinator, who uses it
	as an input to perform the security analysis.
Outage Planning Agent	Outage Planning Agent provides the availability plan to
	the security assessment coordinator who uses this in
	case a remedial action would be the cancellation or
	shortening of an outage plan.
System Operator	Within CSA business process, SO provides most of the
	needed inputs to perform the security analysis. This role
	also participates in the remedial action coordination
	agreeing or rejecting the remedial actions.
Security Assessment	The Security Assessment Coordinator is in charge of
Coordinator	performing the security assessment against
	contingencies in order to identify potential congestions in
	the grid and propose to the SO a set of remedial actions
	to solve the found issues.
Remedial Action Optimization	Remedial Action Optimization Operator performs the
Operator	remedial action optimization on the basis of security
	assessment result before RAO and available remedial
	actions
Remedial Action Coordinator	The Remedial Action Coordinator main task is to get the
	agreement on all proposed remedial actions identified by
	the remedial action optimization step and potentially any
	additional remedial actions specifically requested by a
	SO.
Remedial Action Validator	The main activity of the Remedial Action Validator during
	the final validation session is to review unresolved
	relevant identified constraints (on assessed elements),
	discuss/find possible follow-up activities by TSOs and
	RSCs and deliver the conclusions.

Table 2 gives a list of use cases for the CSA business process.

Table 2 - CSA use cases

Use case label	Roles involved	Action descriptions and assertions
Input data preparation	SO, Merging Agent, Outage Planning Agent, Security Assessment Coordinator	In order to allow the representation of the grid as well as the proper assessment of its security and the identification of potential effective and efficient remedial actions for the mitigation of identified constraints, the SO shall provide the list of assessed elements, contingencies, remedial action (including SIPS) and equipment reliability (e.g. Power transfer Corridor, reliability limits, etc) and Steady State Instructions. Optionally Generation and Load Shift keys can be provided. SO shall provide as well its IGM to the Merging Agent, who builds the CGM as input to the CSA process. Outage Planning Agent provides the availability plan. Finally, the security assessment coordinator performs a business check on all the received data.
Build common grid model	Merging Agent	Merging agent builds the CGM as the comprehensive aggregation and calculation on

463

Perform regional security assessment	Security Assessment Coordinator	the basis of the IGMs and some relevant additional input data (e.g. boundary information reference data); this is out of the scope of this document and part of the CGM Building Process. The Security Assessment Coordinator performs the security assessment against contingencies in order to identify potential congestions in the grid. This security assessment is run according to rules defined in the CCR Article 76 methodology (at least flows and potentially other aspects of security).
Perform remedial action optimization	Remedial Action Optimization Operator	The Remedial Action Optimization Operator performs the remedial action optimization to select the most suitable remedial actions to operate the network efficiently while ensuring security of supply.
Perform remedial action coordination	SO, Remedial Action Optimization Operator, Remedial Action Coordinator.	The Remedial Action Coordination is divided in two steps. The first step consists on managing the Inter-CCR interactions. The purpose is to apply rules (According to CSAm Art. 27) to address the cross-impacts between CCRs on the overlapping zones. In the second step, the impact assessment of all proposed and adjusted remedial actions is performed. This impact assessment consists of identifying the affected SOs for each remedial action, based on the rules defined in the CCR Article 76 methodology (qualitative and/or quantitative rules) and rules for inter-CCR impact (these rules will be defined according to the amendment of CSAm Article 27).
Perform final remedial action validation	Remedial Action Validator, SO	The main activity during the final validation session is to review unresolved relevant identified constraints (on assessed elements), discuss/find possible follow-up activities by SO and Remedial Action Validator and record the conclusions. Remedial Action Validator shall provide the results and decisions to the SO.

5.3 Sequence diagram

Next figure shows a sequence diagram with the inputs of the CSA data exchange process.

:Merging Agent :Outage Planning Agent :System Operator :Security Assessment Coordinator

Individual Grid Model(CGMES)

Common Grid Model(CGMES)

List of assessed elements(Assessed Element Profile)

List of contingencies(Contingency Profile) |

Remedial Actions(Remedial Action Profile) |

Equipment Reliability(Equipment Reliability Profile)

Steady State Instructions(Strady State Instruction profile)

Optional: Generation & Load Shift Keys(CSLK profile)

Figure 4 - CSA inputs Sequence diagram

First of all, the process starts with the submission of the Individual Grid Model from each SO to the Merging Agent. Please notice that each IGM is composed by at least four profiles (e.g. Equipment, Topology, Steady State Hypothesis and State Variables). The frequency of submission of these profiles is different. In the case of equipment and topology and their boundaries have to be submitted when there are equipment or topology changes. For steady state hypothesis and state variables, they will have to be submitted per market time unit (e.g. 1 hour or 15 min resolution). Merging Agent merges all the IGMs and provides the CGM to the Security Assessment Coordinator.

The System Operator provides the list of assessed elements, contingencies, remedial actions, equipment reliability, steady state instructions and optionally, the GLSK. Outage planning agent provides the availability plan which is an output of the OPC process.

491 492

493 494

Next figure shows a sequence diagram of the CSA data exchange process

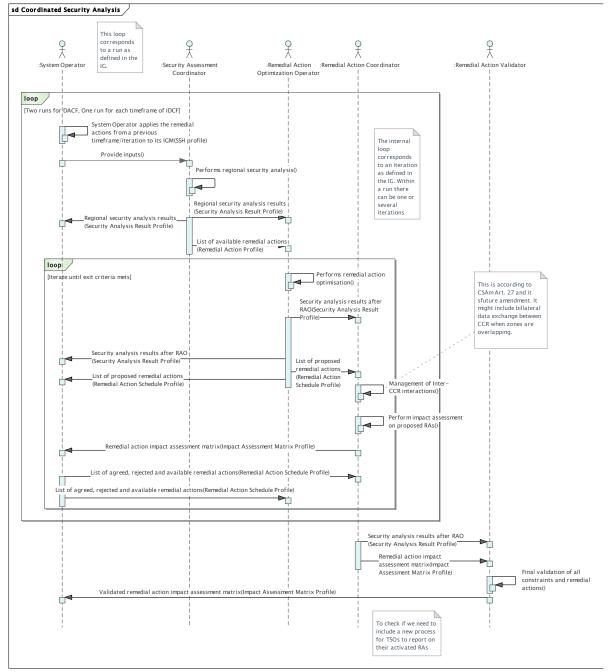


Figure 5 - CSA general sequence diagram

497

498 499

500

501

502

503 504

505

506

507 508

509

510

511

512

513 514

515

516

517 518

519

520

521

522

523 524 With all the inputs, Security Assessment Coordinator runs the regional security analysis. Basically, the security assessment allows to identify potential congestions in the grid. The result of this contingency analysis contains the identified limit violations in both base case (N situation) and considering contingencies (N-1, N-2 situation). Apart from the violations, Security Assessment Coordinator also provides the available remedial actions to the Remedial Action Optimization Operator. The available remedial actions are the remedial actions which are available to solve identified constraints.

The remedial action optimization is performed for each Capacity Coordination Region. As a result of the optimisation, the security analysis after RAO and a list of proposed remedial actions are delivered to both System Operator and Remedial Action Coordinator.

After that, Remedial Action Coordinator addresses the inter-CCR interactions which consists in addressing the cross-impacts between CCRs on the overlapping zones. Just after the CCR interactions, remedial action coordinator performs the impact assessment on the proposed remedial actions. The outcome of this process is the impact assessment matrix. The main purpose of the matrix is to identify the affected SOs for each remedial action. The impact assessment matrix is delivered to the SOs. Each SO shall agree or reject each remedial action by which it is impacted. If a SO rejects a remedial action, it shall provide the reasoning and (optionally) suggest alternative new available remedial actions or modified available remedial actions. Both optimization and coordination are repeated during several iterations until an exit criterion meets. The exit criteria can be, for instance, when all the identified constraints have been solved with the agreed remedial actions, or time limit is reached.

The big loop is also defined as run. In Day-Ahead there will be two runs and in Intraday only one. Basically, for the day ahead, the process is repeated twice.

After coordination, a final remedial action validation session is performed by the remedial action validator which receives from remedial action optimization operator the security analysis results and the impact assessment matrix. The main activity during the Final Validation Session is to review unresolved relevant identified constraints (on assessed elements) and discuss or find possible follow-up activities by SOs and Remedial Action Validator. Finally, the validated impact assessment matrix is delivered to the System Operator and the process finishes.

5.4 State diagrams

5.4.1 Remedial action state diagram

528 529

530531

532

533

534

535

536

527

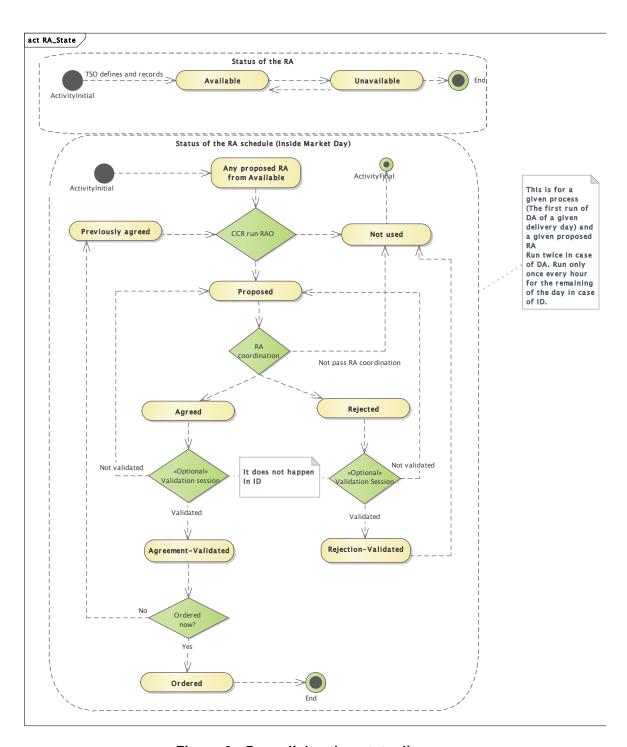


Figure 6 - Remedial action state diagram

System operator can define a set of remedial actions in the system. Once defined, an remedial action can be considered as available, in this case the remedial action can be taken into account when running the CSA process or unavailable in case that an remedial action cannot be used. In case that a remedial action is not needed anymore, once it is disabled, then it can be archived for tracking and historic purposes.

- All available remedial actions can be used for the remedial action optimization process which will choose the most appropriate remedial actions to solve the different issues in the scenario.

 These remedial actions are denominated as proposed remedial action.
- Just after the remedial action optimisation process is finished, remedial action coordination starts. If the remedial action does not pass the coordination, then it becomes available again. If it passes the coordination, the remedial action can be agreed or rejected. These two states must be validated during the validation session. If they are not finally validated, they become available again.
- In case that a rejected remedial action is agreed, then it becomes proposed and could be used again as an input for the remedial action optimisation process. On the other hand, for the agreed remedial actions that are validated they can be activated now or in a later stage. In case that an remedial action is not activated now, then it becomes a previously agreed remedial action. If it is activated now, then the remedial action changes its status to activated and the process finishes.

5.4.2 Contingency category diagram

551

552

553 554

555

556 557

558

559

560

561

562

563

564

565

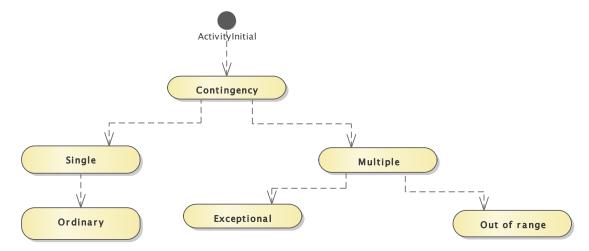


Figure 7 - Contingency category diagram

We can have single and multiple contingencies. A single contingency can contain a single contingency element (often referred to as n-1 contingencies) and a multiple contingency can contain several contingency elements (n-x).

Within the single group of contingencies, we only have ordinary contingencies. An ordinary contingency means the occurrence of a contingency of a single branch or injection Within the multiple groups of contingencies, we have exceptional contingencies which means the simultaneous occurrence of multiple contingencies with a common cause, and out of range contingencies which means the simultaneous occurrence of multiple contingencies without a common cause, or a loss of power generating modules with a total loss of generation capacity exceeding the reference incident

5.4.3 Network element category diagram

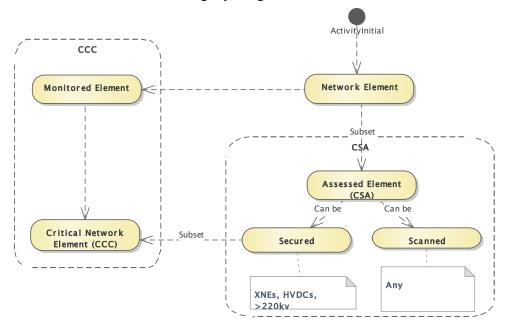


Figure 8 - Network element category diagram

Any network element could be an assessed element in CSA. The assessed elements can be secured or scanned. A Secured element is an Assessed Element on which remedial actions needed to relief these violations shall be identified, when violations of an operational security

- limit are identified during the regional or cross-regional security analysis. A secured element could be a cross network element, HVDC lines or lines over 220 KV.

 A scanned is an Assessed Element on which the electrical state (at least flows) shall be computed and shall be subject to an observation rule during the regional security analysis process. Such observation rule can be for example avoiding the increase of a constraint or
- 575 process. Such observation rule can be for example avoiding the increase of a constraint or 576 avoiding the creation of a constraint on this element, as a result of the design of remedial 577 actions needed to relieve violations on the secured elements. A scanned element could be 578 any gird element.
- any gird element.
 A critical network element is a network element monitored during the coordinated capacity
 calculation process. Critical network elements are a subset of the secured elements.

5.5 Other diagrams

5.5.1 System Integrity Protection Schemes (SIPS) overview

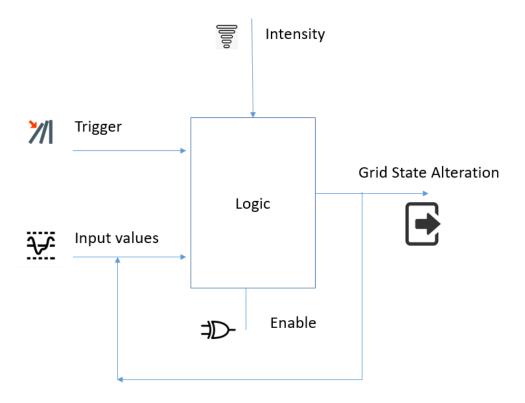


Figure 9 - SIPS overview

586 587 588

589

590

591

592 593

594

595 596

597

598

599

600

601

602

603

604

605 606

607 608

609

610

585

582

583

584

System Integrity Protection Schemes (SIPS) / Remedial Action Schemes (RAS) are often applied by TSOs to utilize the transmission capacity beyond conventional N-1 considerations. This is done while still maintaining reliability of supply, for example by relieving overloaded lines through immediate disconnection of generator units when lines are disconnected by their protective relay equipment. Other schemes are also in use, such as emergency power on HVDC links, load shedding and network splitting. Without modelling SIPS or RAS unrealistic congestion/overload will be reported by the power flow simulation tools.

As shown in Figure 9, a SIPS is based on a logic which has inputs signals and related triggers to start the logic. Depending on the logic conditions and the intensity of the event, if the logic is enabled, the output of the SIPS will result in a grid state alteration.

The following are some examples of the objectives of system-wide protection/control schemes:

- Overload mitigation
- System separation for transient stability
- Load and generation shedding/rejection
- Under and over Voltage load shedding
- Under and over Frequency generation/load shedding
- Detection/shutdown of islanded network
- Over Frequency tripping of unloaded generators
- Improvement of power transmission to increase total transfer capability
- Improvement of system stability under the large deployment of renewable energy resources
- Maximize the capability of apparatus (the thermal limit of apparatus).

- 611 Any values described in SteadyStateHypothesisProfile (SSH) can be input values or Grid
- State Alteration value.

Application profile specification 6

614 6.1 General

613

627

631

635

636

637

638

639

640

641

642 643

644

645

646 647

648

- CSA business process relies on data exchange standards to exchange the information on the 615 base power flow case. These are models representing IGMs and CGMs. In addition, the CSA 616 needs information on remedial actions, assessed elements, contingencies, etc in order to 617 complete the data needed to perform the coordinated security analysis. The additional 618
- information is supplied by the following profiles: 619
- 620 Remedial action profile
- 621 Assessed element profile
- 622 Contingency profile
- Equipment reliability profile which includes SIPS configuration, security limits, Power 623 624 Transfer Corridor
- 625 Generation and Load Shift Key profile
- 626 Availability plan profile
 - Remedial action schedule profile
- Security analysis result profile 628
- 629 Impact assessment matrix profile
- Steady state instruction profile 630

Compatibility with other data exchange standards

- Profiles that will be used for CSA process are designed in a way that they are compatible with 632 both CGMES v2.4 (IEC TS 61970-600-1 and -2:2017) and CGMES v3.0 (IEC 61970-600-1 and 633 634 -2:2021). However, the following attention points shall be noted:
 - If CGMES v2.4 is used to represent the IGM and CGM the remedial action cannot efficiently model power electronics and battery units as these objects are only available in CGMES v3.0
 - The information about the operational limits is exchanged in the equipment instance data in the case of CGMES v2.4 based data exchange. Therefore, when there is a need to frequently update the information on the limits, this will require that equipment data is exchanged more frequently or that difference equipment profile shall be used to optimize the data exchange. This limitation does not occur if the IGM and CGM are using CGMES v3.0 as the operational limits is exchanged in the steady state hypothesis instance data.
 - In order to achieve an optimal information exchange, it is assumed that persistent identifiers are used for the IGM and CGM objects. Applying CSA profiles as add-on to an exchange which does not rely on persistent identifiers will create a lot of overhead for the exchange eventually leading to a decreased reliability of the whole process.
- The usage of UCTE DEF as a data exchange format for IGM and CGM for the purpose of CSA 649 650 process is not recommended in conjunction with this set of profiles, for the following non-651 exhaustive list of reasons (to name a few):
- 652 CSA profiles metadata require linkage with the IGM and CGM. UCTE DEF models are 653 identified by file name. Therefore, an additional metadata layer must be added.
- 654 CSA profiles require references to identifiers of the elements from IGM in order to link 655 the remedial actions, assessed elements, etc. UCTE DEF used node codes and circuit

- numbers (for interconnecting elements) in order to uniquely identify them. Therefore, if UCTE DEF is used there will be a need to maintain a list of persistent identifiers and their relationship with node names or elements names.
- CSA requires information on different operational limits that are related to the different time phases to be studied. UCTE DEF has very limited capabilities to exchange limits.
 - Due to the scope of the UCTE DEF the CSA would be limited in terms of what kind of
 grid state alterations and remedial actions could be described and considered in the
 coordination process. Identification of type and modelling of the network elements that
 support voltage control, shunt-connected reactive devices, voltage regulation on
 transformers in case of regulator being modelled on the non-regulated power
 transformer end, will require special attention as they are not in scope of UCTE DEF
 and will be impossible to model without extending UCTE DEF.
 - Generation capacity used as part of remedial actions should be modelled in detail due to limits handling in case of aggregated modelling.
 - UCTE DEF does not separate the information related to the equipment, the information related to the operating point and it also does not cover the solution information. Data consistency changes between data exchanged with CSA profiles and UCTE DEF data will be more extensive (full model exchange), have high dependencies over mapping tables that have to be integrated in the middleware, and will not benefit from using one equipment model for multiple time stamps.
 - UCTE DEF does not allow exchange of power flow solution data, therefore this report will have to be standardized (out of scope of this document) to achieve full information exchange.
 - Use of replaced IGM in created CGM is not possible to trace in case of UCTE DEF, that
 might complicate the process of CSA data validation against the grid models and
 remedial action applicability.

6.3 Constraints naming convention

- The naming of the rules shall not be used for machine processing. The rule names are just a string. The naming convention of the constraints is as follows.
- "{rule.Type}:{rule.Standard}:{rule.Profile}:{rule.Property}:{rule.Name}
- 686 where

661

662 663

664 665

666

667

668

669

670

671

672 673

674

675

676

677 678

679

680

681

- 687 rule.Type: C for constraint; R for requirement
- rule.Standard: the number of the standard e.g. 301 for 61970-301, 456 for 61970-456, 13 for 61968-13. 61970-600 specific constraints refer to 600 although they are related to one or combination of the 61070 450 period profiles. For NC profiles, NC is used.
- 690 combination of the 61970-450 series profiles. For NC profiles, NC is used.
- rule.Profile: the abbreviation of the profile, e.g. TP for Topology profile. If set to "ALL" the constraint is applicable to all IEC 61970-600 profiles.
- rule.Property: for UML classes, the name of the class, for attributes and associations, the name
- of the class and attribute or association end, e.g. EnergyConsumer, IdentifiedObject.name, etc.
- If set to "NA" the property is not applicable to a specific UML element.
- rule.Name: the name of the rule. It is unique for the same property.
- 697 Example: C:600:ALL:IdentifiedObject.name:stringLength

698 6.4 Data exchange specification constraints

This clause defines requirements and constraints that shall be fulfilled by applications that conform to this document.

- R:NC:ALL:Region:reference
- The reference to the region is normally a reference to the capacity calculation region, which is identified by "Y" EIC code of the capacity calculation region.
- R:NC:ALL:SystemOperator:reference
- The reference to the System Operator is normally identified by "X" EIC code of TSO.

706 **6.5 Metadata**

701

722

723

724

725

726

727 728

729

- ENTSO-E agreed to extend the header and metadata definitions by IEC 61970-552 Ed2. This new header definitions rely on W3C recommendations which are used worldwide and are positively recognised by the European Commission. The new definitions of the header mainly use Provenance ontology (PROV-O), Time Ontology and Data Catalog Vocabulary (DCAT). The global new header is included in the metadata and document header specification document.
- The header vocabulary contains all attributes defined in IEC 61970-552. This is done only for
- 713 the purpose of having one vocabulary for header and to ensure transition for data exchanges
- 714 that are using IEC 61970-552:2016 header. This specification does not use IEC 61970-
- 715 552:2016 header attributes and relies only on the extended attributes.

716 **6.5.1 Constraints**

- 717 The identification of the constraints related to the metadata follows the same convention for naming of the constraints as for profile constraints.
- 719 R:NC:ALL:wasAttributedTo:usage
- 720 The prov:wasAttributedTo should normally be the "X" EIC code of the actor (prov:Agent).
- 721 R:NC:ALL:version:usage
 - Coordinated security analysis process requires an information about the number of iteration within a given coordination run to be exchanged as metadata. The attribute dcat:version indicates the version of the model that is serialised in the document where the header is located. Within a coordination run the underling model (the individual grid model) is not changed while in each iteration within the coordination run the model of remedial action and potentially other related models representing CSA profiles change. As the dcat:version is indicating the version of the model, e.g. remedial action, it is the attribute to be used to indicate the iteration number within a coordination run.
- R:NC:ALL:wasInfluencedBy:minimumRequirement
- The attribute prov:wasInfluencedBy indicates the dependency of a given model from another one. The following figure defines the minimum requirement for the references that need to be provided in the document header of all models that conform to CSA profiles.

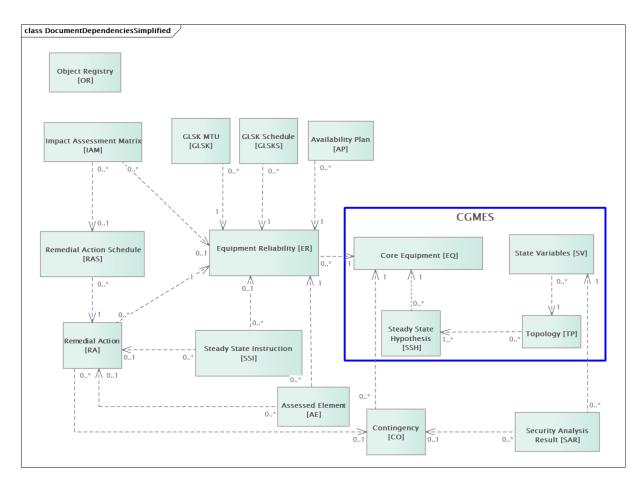


Figure 10. Document header dependencies minimum requirement

6.5.2 Reference metadata

735

736

737

738

739

740

741

742 743 ENTSO-E header and metadata project group is in charge of providing guidance on how to use the reference data and where it is stored. Business processes utilizing the CSA profiles should liaise with above mentioned ENTSO-E project.

The header defined for CSA profiles and included in each profile required availability of a set of reference metadata:

- accessRights: to be defined;
- accrualPeriodicity: should refer to ENTSO-E codelist;
- businessProcess: should refer to ENTSO-E codelist;
- atLocation: should refer to the ENTSO-E Central Issuing Office list of Y-EIC code;
- 748 creator: should refer to the ENTSO-E Central Issuing Office list of X-EIC code;
- 749 wasAttributedTo: should refer to the Central Issuing Office list of X-EIC code;
- 750 keyword: should refer to ENTSO-E codelist;
- 751 type: should refer to ENTSO-E codelist;
- 752 wasGeneratedBy: to be defined.

mult. Header attributes	Description	Assessed element	Contingency	Remedial Action	Remedial Action Schedule	Impact assesment matrix	Security analysis	Equipment Reliability	GLSK	Availability plan	Steady instruction profile
[01] md:created		N\A	N\A	N\A	N\A	N\A	N\A	N\A	N\A	N\A	N\A
[01] md:modellingAuthoritySet		N\A	N\A		N\A	N\A	N\A	N\A	N\A	N\A	N\A
01] md:scenarioTime		N\A	N\A	N\A	N\A	N\A	N\A	N\A	N\A	N\A	N\A
0n] md:profile		N\A	N\A	N\A	N\A	N\A	N\A	N\A	N\A	N\A	N\A
[0n] md:Model.DependentOn		N\A	N\A		N\A	N\A	N\A	N\A	N\A	N\A	N\A
[0n] md:Model.Supersedes		N\A	N\A		N\A	N\A	N\A	N\A	N\A	N\A	N\A
01] md:version		N\A	N\A		N\A	N\A	N\A	N\A	N\A	N\A	N\A
01] md:description		N\A	N\A		N\A	N\A	N\A	N\A	N\A	N\A	N\A
01] prov:generatedAtTime	The date and time when the model was serialized in the document where the header is located.	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 1	1 Mandatory 11	Mandatory 11	Mandatory 1	Mandatory 11	. Mandatory 1
[01] prov:atLocation	Reference to a region or a domain for which this model is provided	N\A	N\A	· ·	N\A	- pri	N\A	N\A	N\A	N\A	N\A
0n] prov:wasInfluencedBy	A reference to the model on which the model serialised in this document depends on.	Mandatory 1r	Mandatory 1n	Mandatory 1n	Mandatory 1n	Mandatory 1	n Mandatory 1r	Mandatory 1r	Mandatory 1	Mandatory 1r	Mandatory 1
[0n] prov:hadPrimarySource	The version of the MAS from where a version of a model is originating.	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 1	1 Mandatory 11	Mandatory 11	Mandatory 1	Mandatory 11	. Mandatory 1
[0n] prov:wasGeneratedBy	Run. Reference to an activity or the exact business nature (process, configuration) which produced or uses the model	N\A	N\A	N\A	Mandatory 11	Mandatory 1	1 Mandatory 11	N\A	N\A	N\A	N\A
[0n] prov:wasAttributedTo	Sender. Reference to the agent (or service provider) from which the model originates.	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 1	1 Mandatory 11	Mandatory 11	Mandatory 1	Mandatory 11	. Mandatory 1
[0n] prov:wasRevisionOf	revisionNumber. When a model is updated the resulting model supersedes the models that were used as basis for the update. Hence										
[UII] prov.waskevisionor	this is a reference to the model which are superseded by this model. A model can supersede 1 or more models	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 1	1 Mandatory 11	Mandatory 11	Mandatory 1	Mandatory 11	. Mandatory 1
0n] prov:specializationOf	Relates to the model. The version of the MAS that is managing the version of the model.	N\A	N\A	N\A	Mandatory 11	Mandatory 1	1 Mandatory 11	N\A	N\A	N\A	N\A
	The duration of the validity period of the model that it is serialized in the document where the header is located. It is only used in										
time:hasXSDDuration	relation to the inXSDDateTimeStamp property which indicates the beginning of the validity period of the model. The end of the validity	,									
[01]	period is derived from both in XSDD ate Time Stamp and has XSDD uration	Optional 01	Optional 01	Optional 01	Mandatory 11	Mandatory 1	1 Mandatory 11	Optional 01	Optional 01	Optional 01	Optional 01
	The date and time that this model represents,										
time:inXSDDateTimeStamp	i.e. for which the model is (or was) valid. If used n relation with hasXSDDuration it indicates the										
[01]	beginning of the validity period.	Optional 01	Optional 01	Optional 01	Mandatory 11	Mandatory 1	1 Mandatory 11	Optional 01	Optional 01	Optional 01	Optional 01
[01] euvoc:status	Indicates the status of a skos:Concept or a skosxl:Label, or any resource related to controlled vocabulary management.	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01
01] eumd:applicationSoftware	Identifies the application software which generated this instance file	N\A	N\A	N\A	N\A	N\A	Optional 01	N\A	N\A	N\A	N\A
[0n] eumd:usedSettings	powerflow settings	N\A	N\A	N\A	N\A	N\A	Optional 01	N\A	N\A	N\A	N\A
[01] eumd:processType	The exact business nature. Reference to Business Process configurations.	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 1	1 Mandatory 11	Mandatory 11	Mandatory 1	Mandatory 11	Mandatory 1
[01] eumd:serviceLocation	Reference to a service location (region or a domain).										
01] dcterms:description	A free-text account of the item.	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01
[01] dcterms:accessRights	Information about who can access the resource or an indication of its security status	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01
[0n] dcterms:conformsTo	profile. An established standard to which the described resource conforms.	Mandatory 1r	Mandatory 1n	Mandatory 1n	Mandatory 1n	Mandatory 1	n Mandatory 1r	Mandatory 1r	Mandatory 1	Mandatory 1r	Mandatory 1
[01] dcterms:identifier	mRID. An unambiguous reference to the resource within a given context	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 11	Mandatory 1	1 Mandatory 11	Mandatory 11	Mandatory 1	Mandatory 11	Mandatory 1
01] dcterms:license	A legal document under which the resource is made available.	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01
[01] dcterms:rights	A statement that concerns all rights not addressed with dcterms:license or dcterms:accessRights, such as copyright statements.	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01
[01] dcterms:rightsHolder	An unambiguous reference to the resource within a given context	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01
01] dcterms:type	type. The nature or genre of the resource.		Optional 01	·		Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01
[01] dcterms:accrualPeriodicity	The frequency at which dataset is published.	N\A	N\A	N\A	Mandatory 11	Mandatory 1	1	N\A	N\A	N\A	N\A
[01] dcterms:creator	The entity responsible for producing the resource.	Mandatory 11	Mandatory 11					Mandatory 11	Mandatory 1	Mandatory 11	Mandatory 1
[01] dcat:keyword	A keyword or tag describing the resource.		Mandatory 11								
[01] dcat:version	The version number of a resource		Mandatory 11								
[01] dcat:previousVersion	The previous version of a resource in a lineage		Optional 01				Optional 01		Optional 01	Optional 01	Optional 01
[01] dcat:hasVersion	This resource has a more specific, versioned resource	N\A	N\A		N\A	N\A	N\A	N\A	N\A	N\A	N\A
[01] dcat:isVersionOf	The inverse of has Version	N\A	N\A		N\A	N\A	N\A	N\A	N\A	N\A	N\A
[01] dcat:hasCurrentVersion	This resource has a more specific, versioned resource with equivalent content	-	Optional 01		•	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01
[01] adms:versionNotes	A description of changes between this version and the previous version of the resource	Optional 01	Optional 01			-	Optional 01	Optional 01	Optional 01	Optional 01	Optional 01

For instance, the attribute prov:wasGeneratedBy requires a reference to an activity which produced the model or the related process. The activities are defined as reference metadata and their identifiers are referenced from the header to enable the receiving entity to retrieve the "static" (reference) information that it is not modified frequently. This approach imposes a requirement that both the sending entity and the receiving entity have access to a unique version of the reference metadata. Therefore, each business process shall define which reference metadata is used and where it is located.